
 A-Z Function Call Reference

A
FBAddBooleanConsta
nt

Registers a boolean constant with the engne

FBAddConstantPrim Registers a constant with the engine
FBAddDateConstant Adds a date constant to the engine
FBAddNumericConsta
nt

Adds a numeric constant to the engine.

FBAddStringConstant Adds a string constant to the engine
FBAddVariable Adds a variable to the current expression instance.

C
FBClearExpression Clears the internal state of the expression
FBCopyValue Copies a TValueRec structure.
FBCreateString Creates a FormulaBuilder type string.

D
FBDateToPasString Converts a FormulaBuilder date to a Pascal type String.

E
FBEnumFunctions Enumerates all registered functions.
FBEvalExpression Performs a quick, single statement expression evaluation.
FBEvaluate Evaluate a specific expression and return its result as a string.
FBEvaluatePrim Evaluate an expression instance and return the result as a TValueRec.

F
FBFreeConstant Removes a constant from FormulaBuilders symbol table.
FBFreeConstants Free all constants registered with FormulaBuilder.
FBFreeExpression Free an expression instance and all associated memory.
FBFreeValue Disposes of all memory associated with a TValueRec.
FBFreeVariable Disposes of a variable associated with an expression instance.
FBFreeVariableList Free all variables associated with an expression instance.

G

FBGetBooleanResul
t

Returns the boolean result of an expression.

FBGetBooleanVaria
ble

Returns the value of a boolean variable.

FBGetConstantPrim Obtains the value of a constant in a TValueRec record.
FBGetConstAsStrin
g

Returns the string representation of the value of a constant.

FBGetDateResult Evaluates an expression instance and returns its date return value.
FBGetDateVariable Retrieves the value of a date variable.
FBGetErrorString Returns a description of a FormulaBuilder error code.
FBGetExpression Returns the text expression assigned to the expression instance with

FBSetExpression.
FBGetFloatResult Evaluates the expression instance and returns its float result.
FBGetFloatVariable Retrieves the value of a float variable.
FBGetFunctionCoun
t

Determines the number of functions registered with FormulaBuilder.

FBGetFunctionProto Returns information on a function registered with the engine.
FBGetIntegerResult Evaluates the expression instance and returns its integer result.
FBGetIntegerVariabl
e

Retrieves the value of an integer variable.

FBGetReturntype Determines the expected return type of an expression.
FBGetStringResult Evaluates the expression instance and returns its string result.
FBGetStringVariable Retrieves the value of a String variable.
FBGetVarAsString Returns the value of a variable as a string, without regard to its type.
FBGetVariableCount Counts the number of variables added to an expression instance.
FBGetVariablePrim Returns the value of a variable as a TValueRec record.
FBGetVarPtr Returns a pointer to the value of a variable maintained in an expression's

variable list.

I
FBInitExpression Allocate a handle for a new expression.

L
FBlpzToDate Convert the null-terminated string source to a FormulaBuilder Date type

P
FBParseAddConsta
nt

Add a constant to the engine based on the result of a text expression.

FBParseAddVariabl
e

Add a variable to an expression based on the result of a text expression.

FBPasStringToDate Converts a Pascal style string to a FormulaBuilder Date
FBPeekVariable Inspect a variable based on its index in an expression's variable list.
FBPeekVarVB A VB compatible version of the FBPeekVariable function.

R
FBRegisterFunction Registers a programmer defined function with FormulaBuilder.
FBReparseExpressi
on

Reparses the expression previously set with a call to FBSetExpression.

S
FBSetBooleanVaria Sets the value of a Boolean variable.

ble
FBSetDateVariable Sets the value of a Date variable.
FBSetExpression Initializes the expression with its infix representation. This triggers the parsing

phase of the evaluation process.
FBSetFloatVariable Sets the value of a Float variable.
FBSetIntegerVariabl
e

Sets the value of an Integer variable.

FBSetStringVariable Sets the value of a String variable.
FBSetVarFromStrin
g

Sets the value of a variable from a valid string representation.

FBSetVariableCallb
acks

 Register functions to enable external variable processing.

FBSetVariablePrim Sets the value of a variable from a TValueRec structure.
FBStringToDate Converts a FormulaBuilder string to a FormulaBuilder date type.
FBStrncpy Copy a specified number of characters from a FormulaBuilder string to a null-

terminated string.

U
FBUnregisterFunctio
n

Unregisters a programmer-defined function registered with the
FBRegisterFunction call

ABS Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the absolute (positive) value of its argument

Syntax
ABS(x)

X is any number

See Also
 SGN

ACOS Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the arc cosine of a number.

Syntax
ACOS(number)

number is the cosine of the angle. The cosine can range from 1 to -1.

Remarks
The resulting angle is the angle whose cosine is number. The answer is returned in radians (from 0 to Pi).
To convert the resulting radians to degrees, use the DEGREES function.

See Also
 COS
 PI

ACOSH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the hyperbolic arc cosine of x

Syntax
ACOSH(x)

X is any positive number greater than 1.

See Also
 ASINH
 ATANH
 COSH

ACOT Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the inverse cotangent of an angle in radians.

Syntax
ACOT(x)

X is any number. If your x value is in degrees, use the RADIANS function to convert it to radians before
passing it to this function

See Also
 COT
 PI

ACOTH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the inverse hyperbolic cotangent of an angle in radians.

Syntax
ACOTH(x)

X is any number between 1 and -1, excluding 1 and -1. If your x value is in degrees, use the RADIANS
function to convert it to radians before passing it to this function

See Also
 ACOT
 COT
 COTH

ACSC Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the inverse cosecant of a number.

Syntax
ACSC(x)

X is any number such that |X| < 1. If your x value is in degrees, use the RADIANS function to convert it to
radians before passing it to this function.

See Also
 ACSCH
 CSC

ACSCH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the inverse hyperbolic cosecant of a number.

Syntax
ACSCH(x)

X is any number.

See Also
 CSC
 CSCH

ASC Function
See Also String Functions A-Z Function Reference
Description
Returns a numeric (ANSI) code for the first character in a text string

Syntax
ASC(text)

Text is the string for which you want to determine the code.

ASEC Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the inverse secant of an angle.

Syntax
ASEC(x)

X is the angle in radians, such that |X| < 1. If your x value is in degrees, use the RADIANS function to
convert it to radians before passing it to this function.

See Also
 ASECH
 SEC

ASECH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the inverse hyperbolic secant of an angle.

Syntax
ASECH(x)

X is the angle in radians, such that |x| <= 1

Remarks
If you wish to convert a value expressed in degrees to radians, use the RADIANS function.

See Also
 ASEC
 SECH

ASIN Function
See Also Math/Trig Functions A-Z Function Reference
Description
ASIN(X) calculates the arc (inverse) sine of of an angle using the sine x of the angle.

Syntax
ASIN(x)

X is the sine of the angle, in the range -1 to 1.

Remarks
x is presumed to be in radians as opposed to degrees. To convert an angle from degrees to radians, use
the RADIANS function. The result is an angle, in radians, from -Pi through Pi.

See Also
 ASINH
 PI
 SIN

ASINH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the inverse hyperbolic sine of a number.

Syntax
ASINH(x)

Remarks
The inverse hyperbolic sine is the value whose hyperbolic sine is , so ASINH(SINH(x)) = x. x is any
number floating point or integer value.

See Also
 ACOSH
 ATANH
 SINH

ATAN Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the arc (inverse) tangent of an angle by using its tangent.

Syntax
ATAN(x)

x is a number which represents the tangent of the angle.

Remarks
The result of ATAN is an angle, in radians, between -Pi/2 and Pi/2. To convert the resulting angle from
radians to degrees, use the DEGREES function.

See Also
 ATAN2
 ATANH
 Pi
 TAN

ATAN2 Function
See Also Math/Trig Functions A-Z Function Reference
Description
Atan2(X,Y) calculates the arc tangent of the angle represented by the point with (x,y) coordinates X and
Y.

Syntax
ATAN2(x,y)

x is the x coordinate
y is the y coordinate

Remarks
The arc tangent is the angle, determined by the point described by the coordinates. The result is an
angle, in radians, from -Pi through Pi, excluding -Pi.

See Also
 ATAN
 ATANH
 Pi
 TAN

ATANH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the inverse hyperbolic tangent of a number.

Syntax
ATANH(X)

X is any number between -1 and 1 exclusive.

Remarks
The inverse hyperbolic tangent is the value whose hyperbolic tangent is x, i.e. ATANH(TANH(X)) = X.

See Also
 ATAN
 ATAN2
 Pi
 TAN

AVG Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the average of a list of numeric values.

Syntax
AVG(num1 <, num2,...numn>)

num1, num2, numN are the numeric values for which you wish to find the mean. Up to MAXPARAMS
values may be entered.

See Also
 MAX
 MIN
 PRODUCT
 SUM

FormulaBuilder 1.0 ™
YGB Software, Inc
Copyright © 1995, Clayton Collie
All Rights Reserved

Delphi, Turbo Pascal, Turbo C and Borland C++ are Trademarks of Borland, Intl
Quattro Pro is a Registered Trademark of Novell, Inc.
Windows, Windows '95, Visual Basic and Visual C++ are Trademarks of Microsoft Corp.
Portions of this package, including TUZFilter is Copyright INFOPLAN
Other brand and product names are trademarks or registered trademarks of their respective holders.

Active Property
See Also
Applies To
TDSFilter

Declaration
Property Active : boolean;
Description
Determines whether the dataset will be filtered according to the expression set in the Formula or Lines
properties.

Note if the Datasource property changes, the TDSFilter checks to ensure that the filter expression is still
valid for the new dataset. If an error is detected, Active is automatically set to FALSE. NOTE: Active can
be influenced by the LoadActivated property, to put the filter in active state at form startup time.

See Also
 LoadActivated Property

AddBooleanConstant Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure AddBooleanConstant(const name : TVarname;value : Boolean);
Description
Registers a Boolean constant named name with the value value with the engine. Note that all constants
are system global (visible to all expressions). The Status property will return EXPR_DUPLICATE_IDENT
if the name name is already in use.

See Also
 AddConstantPrim
 AddDateConstant
 AddNumericConstant
 AddStringConstant

AddConstantPrim Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure AddConstantPrim(const name : TVarName;Var Value : TValueRec);

Description
Registers a constant named name with the engine. The engine is responsible for freeing memory
associated with value. See the definition of TValueRec in the Type Reference Section. Note that all
constants in this version of FormulaBuilder are system global.

See Also
 AddBooleanConstant
 AddDateConstant
 AddNumericConstant
 AddStringConstant

AddDateConstant Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure AddDateConstant(const name : TVarName;value : TFBDate);
Description
Registers a date constant named name with the value value with the engine. Note that all constants are
system global (visible to all expressions). The Status property will return EXPR_DUPLICATE_IDENT if
the name name is already in use. Note that TFBDate is a synonym for TDateTime.

See Also
 AddBooleanConstant
 AddConstant
 AddNumericConstant
 AddStringConstant

AddNumericConstant Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure AddNumericConstant(const name : TVarname;value : double);
Description
Registers a numeric constant named name with the value value with the engine. Note that all constants
are system global (visible to all expressions). The Status property will return EXPR_DUPLICATE_IDENT
if the name name is already in use.

See Also
 AddConstant
 AddDateConstant
 AddBooleanConstant
 AddStringConstant

AddStringConstant Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure AddStringConstant(const name : TVarname;value : String);

Description
Registers a string constant named name with the value value with the engine. Note that all constants are
system global (visible to all expressions). The Status property will return EXPR_DUPLICATE_IDENT if
the name name is already in use.

See Also
 AddBooleanConstant
 AddConstant
 AddDateConstant
 AddNumericConstant

AddVariable Method
See Also Example
Applies to
All FormulaBuilder Components

Declaration
Procedure AddVariable(const name : string;vtype : byte);
Description
Adds a variable of type vtype to the engine for the expression object. name then becomes available for
use in expressions. The initial value will be the NULL representation appropriate to the variable’s type.

Note
Both the internally managed variable table and the OnFindVariable event methods are checked to see if
the variable exists.

AddVariable Method Example
Example
This code assumes we have an initialized TExpression instance named Expression1

Procedure TForm1.AddVariables;
begin
 with Expression1 do
 begin
 { Note that the variables were added before the expression }
 { involving them was assigned to the Formula property }
 AddVariable('Name',vtSTRING);
 AddVariable('BirthDate',vtDATE);
 AddVariable('Married',vtBOOLEAN);
 AddVariable('Children',vtInteger);
 AddVariable('Salary',vtFLOAT);
 AddVariable('PIN',vtFLOAT);
 Formula := 'PIN := Length(Name) + DAY(BirthDate) -
 (Sqrt(Age) * Salary) * IIF(Married,Kids,0)';
 end;
end; { AddVariables }

See Also
 ParseAddVariable

Adding An Expression Instance To A Form
We can a variable EXPRESSION1 of type TExpression to the form in a few ways. This discussion applies
equally to TDSExpression , TDBExpression and TDSFilter

To Add a FormulaBuilder Component to a Form
To use the component version of TExpression, simply select the Expression icon from the 'FBuilder'
page of the component palette and drop it onto your form. A EXPRESSION1 : TExpression is
added to the Delphi-managed portion of the form's declaration. Delphi automatically adds FBCOMP to
your USES statement.

Alternately, you may choose to use the component version non-visually. To do so, manually add
FBCOMP to your USES statement, and add

 Expression1 : TExpression;

 to either the public or private part of the form’s declaration.

For the data-aware components, make sure that FBDBCOMP appears in the USES statement of the unit
using the expression class. For the RTTI-Aware class, make sure that FBRTCOMP appears in the USES
statement.

Adding FormulaBuilder To a Visual Basic Project
To Add FormulaBuilder to a Visual Basic Project

 Ensure that the FormulaBuilder DLL is in your search path

 From an open Visual Basic project
 Select File|Add File
 From the file selection dialog box, select the header file FBCALC.BAS

Adding New Functions
FormulaBuilder makes it possible for us to define new functions that can be recognized by the parser.
These functions have the same status as built-in functions. The means of registering new functions with
the engine is the FBRegisterFunction function call.

Programmer defined functions are implemented using a callback procedure of the type
TCBKExternalFunc All functions to be added to the FormulaBuilder Engine must adhere to this prototype
and the implementation header must declared using the export directive.

 We will demonstrate how to implement programmer -defined functions.

Example 1
Example 2

Adding Variables
Variables may be added by calls to AddVariable. The variable names may then be used in expressions.
If the specified variable name exists, an EXPR_DUPLICATE_IDENT status is returned. Both the internally
managed variable table and event methods are checked to see if the variable exists.

Adding Your Own Functions
FormulaBuilder provides over 110 functions in various categories to cover a wide range of problem areas.
There are times, however, when specialized functions may be needed to fulfill a particular task. Also, if a
particular expression is used frequently in an application, it may be more efficient to convert it into a
parameterized function.

Adding New Functions
Error Reporting From External Functions
Implementing Functions With Variable Parameter Lists
Programmer Defined Functions and the vtANY type
Passing Application Data to External Functions

Advanced Variable Handling : Callback Example
unit Eiscbkfm;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 StdCtrls, Forms, DBCtrls, DB, DBGrids,
 SSheet,FBCOMP,FBDBCOMP,
 FBCALC,
 Grids,DBTables, ExtCtrls, Buttons;

type
 { since SetFieldCallbacks is a protected member of TDSExpression, we }
 { simply declare a dummy descendant to be able to get at the protected }
 { parts of TDSExpression }
 TNewExpression = Class(TDSExpression)
 end;

 TForm2 = class(TForm)
 DBGrid1: TDBGrid;
 DBNavigator: TDBNavigator;
 Panel1: TPanel;
 DataSource1: TDataSource;
 Panel2: TPanel;
 Table1: TTable;
 Panel3: TPanel;
 SSheetGrid: TStringGrid;
 GroupBox1: TGroupBox;
 ResultPanel: TPanel;
 FormulaEdit: TEdit;
 BitBtn1: TBitBtn;
 SpeedButton1: TSpeedButton;
 procedure FormCreate(Sender: TObject);
 procedure SSheetGridGetEditText(Sender: TObject; ACol, ARow: Longint;
 var Value: OpenString);
 procedure SSheetGridSetEditText(Sender: TObject; ACol, ARow: Longint;
 const Value: String);
 procedure FormDestroy(Sender: TObject);
 procedure SpeedButton1Click(Sender: TObject);
 private
 { private declarations }
 Sheet : TSpreadSheet;
 public
 { public declarations }
 Expression : TNewExpression;
 end;

var
 Form2: TForm2;

implementation
{$R *.DFM}

{
The syntax for "spreadsheet" cell access in [RnCn] where n is an integer,
for example :

 "[R1C1] * [R2C2] - [R5C2]"
}

 Function SheetFindVarCBK(vname : pchar;
 var vtype : byte;

 var vardata : longint;
 CBKData : longint):integer; export;
 var r,c : word;
 theSheet : TSpreadSheet;
 begin
 result := EXPR_SUCCESS;
 if not ParseCellname(strpas(vname),r,c) then
 begin
 vtype := vtNONE;
 exit;
 end;
 theSheet := TSpreadSheet(CBKData); { Cast CBKData back into spreadsheet }
 { check to see if r and c are within range. If not, return an error }
 if (r > MAXROWS) or (c > MAXCOLS) then
 begin
 Result := EXPR_RANGE_ERROR;
 Exit;
 end;
 { in our spreadsheet, all values are floats }
 vtype := vtFLOAT;
 { typecast vardata to a pointer to our actual value. This speeds }
 { up variable access when the value of the cell needs to be retrieved. }
 { see GetVariable function }
 vardata := longint(@theSheet.sheetData[r,c]);
 end; {}

function SheetGetVarCBK(vname : pchar;
 var Value : TValueRec;
 vardata : longint;
 CBKData : longint) :integer; export;
var theSheet : TSpreadSheet absolute CBKData;
begin
 result := EXPR_SUCCESS;
 { we could retrieve the value this way :

 ParseCellName(varname,r,c);
 value.vFloat := TheSheet.SheetData[r,c];

 but since we set vardata to point directly to the data, all we need to
 do is typecast and dereference the vardata parameter (see above). This
 is a bit faster, since we skip the ParseCellName function call.
 }
 value.vFloat := PDouble(VarData)^;
 { no errors occurred so we dont have to set errcode. Its value is
 EXPR_SUCCESS on entry }
end; { getVariable }

Function SheetSetVarCBK(vname : pchar;
 value : TValueRec;
 vardata : longint;
 CBKData : longint):integer; export;
begin
 { we could set the value this way :

 ParseCellName(varname,r,c);
 TheSheet.SheetData[r,c] := value.vFloat;

 but since we set vardata to point directly to the data, all we need to

 do is typecast and dereference the vardata parameter (see above). This
 is a bit faster, since we skip the ParseCellName function call.
 }
 PDouble(VarData)^ := value.vFloat;
 { no errors occurred so we dont have to set errcode. Its value is
 EXPR_SUCCESS on entry }
end; { setVariable }

procedure TForm2.FormCreate(Sender: TObject);
var r, c : integer;
 tmpstr : String[15];
begin
 Table1.Open;
 Sheet := TSpreadSheet.Create;
 Expression := TNewExpression.Create;
{ Note the last parameter passed to SetFieldCallbacks. This is the value that }
{ is passed to the CBKData parameter of the callback functions. We use this }
{ fact to pass our instance of the spreadsheet to the callback functions }
 Expression.SetFieldCallbacks(SheetFindVarCBK,
 SheetGetVarCBK,
 SheetSetVarCBK,
 longint(Sheet));
 Expression.Dataset := Table1;
 for r := 0 to MAXROWS do
 for c := 0 to MAXCOLS do
 begin
 if (r + c = 0) then continue;
 if (r = 0) then
 begin
 tmpStr := 'C'+IntToStr(c);
 SSheetGrid.Cells[c,r] := tmpstr;
 end
 else
 if (c = 0) then
 begin
 tmpStr := 'R'+IntToStr(r);
 SSheetGrid.Cells[c,r] := tmpstr;
 end
 else
 begin
 tmpstr := FloatToStrF(Sheet.SheetData[r,c],ffCurrency,10,2);
 SSheetGrid.Cells[c,r] := tmpstr;
 end;
 end;
end;

procedure TForm2.SSheetGridGetEditText(Sender: TObject; ACol,
 ARow: Longint; var Value: OpenString);
begin
 Value := FloatToStrF(Sheet.SheetData[ARow,Acol],ffCurrency,10,2);
end;
procedure TForm2.SSheetGridSetEditText(Sender: TObject; ACol,
 ARow: Longint; const Value: String);
var temp : double;
begin
 Try
 Sheet.SheetData[ARow,ACol] := StrToFloat(value);

 except
 {}
 end;
end;
procedure TForm2.FormDestroy(Sender: TObject);
begin
 Expression.Free;
end;
procedure TForm2.SpeedButton1Click(Sender: TObject);
var stringExpr : String;
begin
 StringExpr := FormulaEdit.Text;
 if StringExpr <> '' then
 begin
 Expression.Formula := StringExpr;
 if Expression.Status <> EXPR_SUCCESS then
 begin
 MessageBeep(MB_ICONHAND);
 ResultPanel.Caption := Expression.StatusText;
 end
 else
 ResultPanel.Caption := Expression.AsString;
 end;
end;
end.

Advanced Variable Handling Examples
Three example programs have been provided to demonstrate the issues discussed here. They implement
the simple Stock Market EIS scenario we described above :

The EISBASIC.DPR project demonstrates the possible problems we may encounter if we use default
variable processing

The EISCBK.DPR project demonstrates an improvement using callbacks set at the DLL call level.

The EIS.DPR project shows how to use programmer defined variable processing via the events of the
TExpression class.

The syntax for "spreadsheet" cell access in [RnCn] where n is an integer, for example :

 "[R1C1] * [R2C2] - [R5C2]"

except in EISBASIC.DPR where the square brackets are not used.

Note that the last two projects use the TDSExpression class, which itself uses external variable handling
to treat fields of a BDE dataset as variables.

Advanced Variable/Field Handling
The standard methods of handling variables work well in a large number of case (expressions with a
small number of variables), but may be inappropriate or inefficient in other instances. Imagine this
scenario :

We are designing an EIS project which permits calculations based on Stock Market data in a database as
well as a spreadsheet. Suppose also that the number of variables in such a formula are large (for the
sake of our examples,well use just a few, but imagine that there are many).

The Usual Methods
Using The Variable/Field Callback Functions

The Variable/Field Handling Events
The TExpression Events fully encapsulate the FormulaBuilder Callbacks in the Onxxx event handlers.
Handling variables and fields using these events involves two steps

For programmer defined variable handling, assign methods to the OnFindVariable, OnGetVariable
and optionally the OnSetVariable properties.

Set the UseEvents boolean property of the TExpression instance to TRUE. This tells FormulaBuilder
that you will implement variable handling in your own code, in addition to the default behavior. Since a
field is a variable by another name, no further action is necessary to handle fields in you code.

Examples

Alphabetical Function Reference
See Also

This topic provides an alphabetical reference for the FormulaBuilder functions. Refer to Understanding
Functions, for additional information about using these functions. The built-in functions listed in the
following sections are:

ABS FIND PROPER
ACOS FIRST PV
ACOSH FLOOR PVAL
ACOT FRAC RADIANS
ACOTH FV RAND
ACSC FVAL RATE
ACSCH HOUR REPLACE
ASC IIF REPLICATE
ASEC INSERT ROUND
ASECH INT RTRIM
ASIN IPAYMT SEC
ASINH IRATE SECH
ATAN IRR SECOND
ATAN2 ISEVEN SGN
ATANH ISODD SIN
AVG LAST SINH
CEILING LENGTH SLN
CHAR LN SOUNDEX
CHOOSE LOG SOUNDALIKE
CLEAN LOWER SQR
COS LTRIM SQRT
COSH MAX STR
COT MAXSTR SUM
COTH MID SYD
CSC MIN TAN
CSCH MINSTR TANH
CTERM MINUTE TERM
DATE MONTH TIME
DATEDIFF MONTHNAME TIMENOW
DATETOSTR NOW TIMETOSTR
DATEVALUE NPER TIMEVALUE
DAY NPV TODAY
DAYNAME PADCENTER TRIM
DB PADLEFT UPPER
DDB PADRIGHT VAL
DEGREES PAYMT WEEKDAY
EXP PMT WORDCOUNT
EXTRACT PPAYMT YEAR
FACT PRODUCT

See Also
 Date/Time Functions
 Financial Functions
 Mathematical/Trig Functions
 Miscellaneous Functions
 String Functions

Arithmetic Operators
Operator Precedence
FormulaBuilder supports the standard arithmetic operators

Binary Arithmetic Operators

Operator(s) Description
+ Addition
- Subtraction
* Multiplication
/ Division
div Performs integer division on the operands.
mod Performs modulo division.
^, ** Exponentiation (raise a number to a power).
and, & Performs a bitwise AND of the operands. Floating point values

are truncated before the operation is performed.
or, | Performs a bitwise OR of the operands. Floating point values

are truncated before the operation is performed.
not Performs a unary bitwise negation of an operand. Floating

point values are truncated before the operation is performed.
xor Performs a bitwise exclusive OR of the operands. Floating

point values are truncated to integers before the operation is
performed.

Unary Arithmetic Operators
Operator Description
+ Unary plus (sign identity)
- Unary minus (sign negation)

AsBoolean Property (TInstanceProperty)
See Also
Applies To
TInstanceProperty

Declaration
Property AsBoolean : Boolean;
Description
Reads and sets the instance property as a boolean. If the underlying property is not of type boolean, a
property value error is raised.

AsBoolean Property
See Also
Applies to
TExpression, TDBExpression, TDSExpression, TRTTIExpression

Declaration
Property AsBoolean : boolean;

Description
Read-only. Evaluates the expression, returning its boolean result. An EXPR_TYPEMISMATCH error will
be generated if the expression type is not vtBOOLEAN. The expression result type can be predetermined
by using the ReturnType property. To get the result as a string, use the AsString property.

See Also
 AsString
 ReturnType

AsChar Property (TInstanceProperty)
See Also
Applies To
TInstanceProperty

Declaration
Property AsChar : Char;
Description
Reads and sets the instance property as a char. If the underlying property is not of type Char, a property
value error is raised.

AsDate Property
See Also
Applies to
TExpression, TDBExpression, TDSExpression, TRTTIExpression

Declaration
Property AsDate : TDateTime;

Description
Evaluates the expression, returning its date result. An EXPR_TYPE_MISMATCH error will be generated if
the expression type is not vtDATE. The expression result type can be predetermined by using the
ReturnType property. To get the result as a string, use the AsString property.

See Also
 AsString
 ReturnType

AsFloat (TInstanceProperty)
See Also
Applies To
TInstanceProperty

Declaration
Property AsFloat : Extended;
Description
Reads and sets the instance property as a Floating point value. If the underlying property is not of type
float (I.e. the Kind property is other than tkFloat), a property value error is raised.

AsFloat Property
See Also
Applies to
TExpression, TDBExpression, TDSExpression, TRTTIExpression

Declaration
Property AsFloat : Double;
Description
Evaluates the expression, returning its real-type result. A EXPR_TYPE_MISMATCH error will be
generated if the expression type is not vtFLOAT.or vtINTEGER. The expression result type can be
predetermined by using the ReturnType property. To get the result as a string, use the AsString property.

AsInteger (TInstanceProperty)
See Also
Applies To
TInstanceProperty

Declaration
Property AsInteger : Longint;
Description
Reads and sets the instance property as an integer. Use this property for setting the values of properties
whose Kind property reads tkSet, tkEnumeration or tkInteger. If the underlying property is not of one of
these types, a property value error is raised.

AsInteger Property
See Also
Applies to
TExpression, TDBExpression, TDSExpression, TRTTIExpression

Declaration
Property AsInteger : Longint;
Description
Evaluates the expression, returning its longint result. A EXPR_TYPE_MISMATCH error will be
generated if the expression type is not vtINTEGER. or vtFLOAT. The expression result type can be pre-
determined by using the ReturnType property. To get the result as a string, use the AsString property.

AsMethod (TInstanceProperty)
Applies To
TInstanceProperty

Declaration
Property AsMethod : TMethod;
Description
Reads and sets the instance property as a TMethod. If the underlying property is not a method type, a
property value error is raised.

AsObject (TInstanceProperty)
See Also
Applies To
TInstanceProperty

Declaration
Property AsObject : TObject;
Description
Reads and sets the instance property as an Object instance. If the underlying property is not of type
TObject (or a descendant), a property value error is raised. The Kind property may be checked before
hand to ensure that it is tkClass.

AsString Property
See Also
Applies To
TInstanceProperty

Declaration
Property AsString : string;
Description
Reads and sets the value of a property of an object instance as a string, regardless of the property type.
The string returned from (and expected for) this property is in standard Object Pascal format for a
constant of the property's type. For example, the value of the style of a font may be returned as

'[fsBold,fsItalic]'

To set the style to underline,

fontProp.AsString := '[fsUnderLine]';

Note that any enumerated type identifier which appears in a published property (either in an enumerted
type or a set type) may be used.

AsString Property
See Also
Applies to
TExpression, TDBExpression, TDSExpression, TRTTIExpression

Declaration
Property AsString : string;
Description
This readonly property evaluates the expression and returns the string equivalent of the result, regardless
of the Returntype.

See Also
 AsBoolean AsInteger
 AsDate ReturnType
 AsFloat StringResult

Assigning The Text To Be Evaluated
Before we can use our expression instance, we need to tell it which text expression we wish to have
evaluated. TExpression provides three properties for setting (or querying) the text form of an expression.

The Formula Property Example
Using the Formula property, we have access to the text expression as a Delphi string.

The StrFormula Property Example
For longer strings that exceed the 255 character limit, we can use the StrFormula property.

The Lines Property Example
Even more convenient for memo users is the Lines property. Using this property we have access to the
text expression as an indexed set of lines.

NOTE Assigning text to a TExpression does NOT cause the expression to be evaluated. See the topic
Getting Expression Results for details on retrieving the results of an expression.

AutoRefresh Property
See Also
Applies To
TDSFilter

Declaration
Property AutoRefresh : Boolean
Description
Determines whether the Dataset attached to the Datasource property will be automatically refreshed
when the Active property changes. If False, you must programatically call Refresh.

See Also
 Active Property
 Refresh Method

BDE
BDE is an acronym for the Borland Database Engine (also known as IDAPI). It is the database engine
shipped with Delphi

Basic Concepts
FormulaBuilder makes it easy for you to incorporate run-time expression evaluation into your
applications. Expressions are combinations of operators and operands that evaluate to a single value.:

Operators
The operators are divided into the following categories
Arithmetic Operators
Relational Operators
Logical Operators
String Operators
Boolean Operators

FormulaBuilder also supports the assignment operator ":=" (without the quotes). Assignments of the
form :
Variable := Expression
Field := Expression

may be made to variables that have been added to the engine. The assignment expression sets the value
of the variable as well as returning the value of the expression. Note that only one assignment is
permitted per expression.

Precedence
The meaning of an expression is affected by the Precedence of the operators involved in the expression.
Normal precedence order may be overridden by using parentheses.

Operands
Operands are of the following types :
Constants
Variables
Fields
Functions

The Evaluation Process
Click here for a description of the FormulaBuilder evaluation process.

Boolean Constants
The Boolean constants are "TRUE" and "FALSE" (entered without the quotes). Case is not important.

Boolean Operators
The boolean operators take boolean operands and return a boolean. All except not are binary operators.

Operato
r

Description

not negation
and logical AND. Returns TRUE if both operands are TRUE.
or logical OR. Returns TRUE if either operand evaluates to

TRUE
xor logical exclusive or. Returns TRUE if one or the other, but not

both operands are TRUE.

 Built-In Function Reference
The current release of FormulaBuilder gives the end-user access to over 100 functions in the following
areas:

MATHEMATICAL/TRIGONOMETRIC FUNCTIONS
DATE/TIME FUNCTIONS
STRING FUNCTIONS
FINANCIAL FUNCTIONS
MISCELLANEOUS FUNCTIONS

Click here to see an Alphabetical Function Reference

See the chapter "Extending FormulaBuilder" for information on registering programmer-defined functions
with the FormulaBuilder engine.

C/C++ External Function Example
Suppose we wanted run time access to a function "myfunc()" . For the sake of our discussion, our
function "myfunc()" will include parameters of each type supported by the FormulaBuilder engine. The
declaration of our function, in "C" would be as follows :

char *myfunc(long l,BOOLEAN b,double d,LPSTR s,TFBDate dt);

We could use this in a FormulaBuilder expression as follows :

#define MYEXPR "'myfunc() returns ' + myfunc(12345, true, 10.0245,\
'myfunc string',today())"

HEXPR myHandle;
char result[90];

myHandle = FBInitExpression();
FBSetExpression(myHandle,MYEXPR);
FBEvaluate(myHandle,result,sizeof(result)-1)

Implementing The Callback
In order to make myfunc() available, we have to create an exportable callback function with the prototype
TCBKExternalFunc. Note that the CALLBACK macro expands to FAR PASCAL (see windows.h). Since
the callback needs to be exported from the DLL, we need to use the _export directive. Our
implementation of the function follows:

/* Function with all type parameters */
/* syntax : char *myfunc(long l,BOOLEAN b,double d,LPSTR s,date dt)
void CALLBACK _export myfunc(BYTE paramcount,

 LPPARAMLIST params,
LPVALUEREC retvalue,

 LPINT errcode,
LONG lCBKData)

{
 char result[120];
 char datestr[20];
 long intval;
 BOOL boolval;
 double floatval;
 char strval[81];
 TFBDate dateval;

 intval = params->[0].vInteger;
 boolval = params->[1].vBool;
 floatval = params->[2].vFloat;
 dateval = params->[4].vDate;

 FBStrncpy(strval,params->[3].vpString,80);
 FBDateToLpz(dateval,datestr,20);
 sprintf(result," int : %ld bool : %d float : %f str : %s date : %s ",

 intval,boolval,floatval,strval,datestr);

 retvalue->vpString = FBCreateString(result);

 errcode = EXPR_SUCCESS; / not really necessary, since this is its value on entry
*/
};

Registering The Function
Now that our callback function is written, we need simply to register the function with the FormulaBuilder
parser. We do so by means of the FBRegisterFunction call.

int myFnId = FBRegisterFunction("myfunc",vtSTRING,"ibfsd",5,myfunc);

The first parameter tells FormulaBuilder the name of your function, the second its type (see the vtXXX
constants). The third parameter describes the parameters expected for the function (integer, boolean,
float, string and date respectively). FormulaBuilder guarantees that the elements of the params parameter
passed to myfunc() will be exactly of the type and in the order listed. The next parameter instructs the
parser to expect a minimum of 5 parameters. This value could have been any value from 0 to the length
of the previous parameter. The paramcount parameter of the callback routine, upon entry, contains the
number of parameters the user entered. The final parameter, of course, is a pointer to the function which
implements myfunc().

FBRegisterFunction returns EXPR_INVALID_FUNCTION if the call is unsuccessful, otherwise it returns a
positive integer > 400 which uniquely identifies your function. You may use the return value from the
registration call to unregister the function.

Thats It ! Youve successfully added a function to FormulaBuilder. myfunc() will be treated like any of
FormulaBuilder’s other functions. As you can see, practically any function can be added, including
wrapper functions for the Windows API.

CEILING Function
See Also Math/Trig Functions A-Z Function Reference
Description
Rounds a number up to the nearest whole number

Syntax
CEILING(x)

x is any number

See Also
 FLOOR
 FRAC
 INT
 ROUND

CHAR Function
See Also String Functions A-Z Function Reference
Description
Returns the ANSI character corresponding to a number.

Syntax
CHAR(number)

Remarks
Number is a number between 1 and 255. For example, CHR(32) returns the space character.

See Also
 CODE

CHOOSE Function
See Also String Functions A-Z Function Reference
Description
Uses an numeric expression index to select a value from a list.

Syntax
CHOOSE(choice,value1, value2,...valueN)

choice is the number which is used as the index. If choice is 1, CHOOSE returns value1. If choice is 2,
value2 is returned, and so on.
value1,value2, ...valueN are the values from which the choice is made. Up to MAXPARAMS values of any
type may be included in the list.

 If choice is less than 1 or greater than the number of elements in the list, an EXPR_RANGE_ERROR is
returned.

Example
CHOOSE(2,{10/10/95},"hello",TRUE,Cos(pi * 2)) evaluates to "hello"

CHOOSE(3,"Mon","Tue","Wed","Thu","Fri","Sat","Sun") equals "Wed"

See Also
 IIF

CLEAN Function
See Also String Functions A-Z Function Reference
Description
Cleans a string of all unprintable characters.

Syntax
CLEAN(st)

St is any string or string expression.

See Also
 LTRIM
 RTRIM
 TRIM

CODE Function
See Also String Functions A-Z Function Reference
Description
Returns a numeric (ANSI) code for the first character in a text string

Syntax
CODE(text)

Text is the string for which you want to determine the code.

See Also
 CHAR

COS Function
See Also Math/Trig Functions A-Z Function Reference
Description
Calculates the cosine of angle x, expressed in radians, returning a value between -1 and 1.

Syntax
COS(x)

X is the angle. To convert an angle expressed in degrees to radians, use the RADIANS function.

See Also
 ACOS
 COSH
 Pi

COSH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the hyperbolic cosine of its argument.

Syntax
COSH(x)

Remarks
x is any number floating point or integer value. The value returned is in radians. Use the DEGREES
function if you would like to convert the answer to degrees.

See Also
 ACOSH
 SINH
 TANH

COT Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the cotangent of an angle in radians.

Syntax
COT(x)

X is the angle in radians.

Remarks
If you wish to convert a value expressed in degrees to radians, use the RADIANS function.
COT(X) is equivalent to 1/TAN(X)

See Also
 ACOT
 ACOTH

COTH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the hyperbolic cotangent of an angle.

Syntax
COTH(x)

X is the angle in radians. If your x value is in degrees, use the RADIANS function to convert it to radians
before passing it to this function

See Also
 ACOTH
 COT

CSC Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the cosecant of an angle.

Syntax
CSC(x)

X is the angle in radians. To convert an angle expressed in degrees to degrees, use the RADIANS
function.

See Also
 ACSC
 ACSCH
 CSCH

CSCH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the hyperbolic cosecant of an angle.

Syntax
CSCH(x)

X is the angle in radians.

Remarks
If your wish to convert a value expressed in degrees to radians, use the RADIANS function.

See Also
 ACSC
 ACSCH
 CSC

CTERM Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the number of compounding periods it takes for the present value of an investment to grow to
a future value at a fixed rate of interest per period.

Syntax
CTERM(rate,fv,pv,nper)

Parameter Description
rate the periodic rate of interest, greater than -1
fv future value. The value the investment is expected to attain after the last payment.
pv present value. The current value of the investment
nper the number of payment periods for the investment

See Also
 RATE

CheckLoadFB Function
See Also
Unit
FBCALC

Declaration
Function CheckLoadFB : boolean;
Description
CheckLoadFB checks to see if the FormulaBuilder DLL is loaded. If it is, the function returns TRUE,
otherwise it attempts to load the DLL, and returns true if successful.

See Also
 FBLoaded
 FreeFBuilder
 InitFBuilder

ClassAssignmentCompatible Function
Unit
FB_Rtti

Declaration
Function ClassAssignmentCompatible(Class1 , Class2 : TObject):boolean;

Description
Returns true is class2 can be assigned to class1.

Clear Method
Applies to
All FormulaBuilder Components

Declaration
Procedure Clear;

Description
Clears all internal variables. Returns the TExpression to the state it would be in after a Create call.

Clearing An Expression
The Clear method sets the text and tokenized versions of an expression to NULL, and returns an
expression instance to the state it would be in after a call to the Create constructor.

Note It is not necessary to clear an expression before changing the expression text. For instance, there is
no need for a Clear in the following code :

Expression.Formula := 'Sin(X^2) * Abs(X * COS(Y))';
Panel1.Caption := Expression.AsString;
Expression.Formula := 'IIF(WeekDay(Today()) = 2, TRUE, FALSE)';
Panel2.Caption := Expression.AsString;

Constant Handling Functions
This section details the FormulaBuilder functions relating to user-defined constants. Note that constants
added with the FBAddxxx functions are DLL global (visible to all calling apps), but unlike user-defined
functions, are maintained internally by FormulaBuilder. It is not strictly necessary, except as a matter of
good programming practice, for a task to remove the constants it added. The most frequent error returned
from these functions is EXPR_DUPLICATE_IDENT, indicating that another identifier (variable, constant,
function or operator) was registered with the same name.

Adding Constants
FBAddBooleanConstant
FBAddConstantPrim
FBAddDateConstant
FBAddNumericConstant
FBAddStringConstant
FBParseAddConstant

Getting Constant Values
FBGetConstAsString
FBGetConstantPrim

Disposing Of Constants
FBFreeConstant
FBFreeConstants

CONSTANTS
Constants (also referred to as Literals) are values that do not change. Constants of the following type are
permitted in expressions
Numeric
Strings
Boolean
Date/Time

Constants Property
Applies to
All FormulaBuilder Components

Declaration
Property Constants[Const cname : TvarName]:TValueRec;

Description
This array property provides read/write access to the constant values by a name. If you attempt to
assign a value to a constant that does not exist, a constant with name cname is created and given the
value of the right side of the expression. If you attempt to modify an existing constant, you will get an
error EXPR_DUPLICATE_IDENT.

Note
After assignment, the expression instance owns the memory of the TValueRec assigned to this property,
so DO NOT dispose of it with FBFreeValue .

Example
PiValue := RotationExpr.Constants[’Pi’];

FormulaBuilder 1.0 ™ YGB Software, Inc.

An Advanced Expression Evaluation Engine.
About Copyright Order Form
Introduction
Basic Concepts
Using FormulaBuilder
Built-In Function Reference
DLL Reference
Extending FormulaBuilder
Type and Constant Reference
International Issues
Registration/Ordering Information
License Agreement
Distribution
Technical Support
Disclaimer

FormulaBuilder 1.0 ™ YGB Software, Inc.

An Advanced Expression Evaluation Engine.
Copyright © 1995 Clayton Collie. All Rights Reserved.
FormulaBuilder is published by

YGB Software, Inc
161 Pearl Street
Paterson, NJ, 07501
USA

Information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, except
as permitted in this document, without the express written permission of Clayton Collie or YGB Software,
Inc.

The YGB Software License Agreement, included with the product, specifies the permitted and prohibited
uses of the product. Any unauthorized reproduction or use of the product, or breach of the terms and
conditions of the License Agreement, is forbidden. The License Agreement sets forth the only warranties
applicable to the product and documentation. All warranty disclaimers and exclusions set forth therein
apply to the information contained in this document.

Trademarks
Borland, Delphi, Turbo Pascal, Turbo C and Borland C++ are Trademarks of Borland, Intl
Microsoft, MS, are registered trademarks and Visual Basic, Visual C++ and Windows are trademarks of
Microsoft Corporation in the USA and other countries.
CompuServe is a registered trademark of CompuServe, Inc.
Quattro Pro is a registered trademark of Novell, Inc.
DBFILTUZ and TUZFilter were written by Uli Zindler and Copyright INFOPLAN
All other trademarks are property of their respective holders.

Create Constructor
See Also
Applies To
TInstanceProperty

Declaration
Constructor TInstanceProperty.Create;
Description
Creates an instance of a TInstanceProperty. Note that the Propname and Instance properties must be set
for the object to be useable.

Create Constructor
See Also
Applies to
All FormulaBuilder Components

Declaration
Constructor Create; Virtual;

Description
Creates an instance of the expression evaluator class.

See Also
 Destroy Destructor

CreateFromPath Constructor
See Also
Applies To
TInstanceProperty
Declaration
Constructor CreateFromPath(root : TObject; PropPath : String);
Description
Creates a TInstanceProperty object based on the property path PropPath. Root is the starting point of
PropPath. The Instance property is automatically set to the actual object instance which contains the
property.

Example
For instance, if Root is set to an instance of a TForm, valid property paths would be

'Caption'
'Font.Name'

Note also that you also have (recursive) access to the properties of named components contained in the
Components array of components. For instance, given the same form which contains a TDataSource
named CustomerSource, we could use the following property path:

'CustomerSource.Dataset.Tablename'

If the Root property were set to Application, and our form were named CustomerForm, we would write the
properties as follows :

'CustomerForm.Caption'
'CustomerForm.Font.Name'
'CustomerForm.CustomerSource.Dataset.Tablename'

See Also
 Create
 CreateFull
 CreateFromSearch

CreateFromSearch Constructor
See Also
Applies To
TInstanceProperty

Declaration
Constructor CreateFromSearch(root : TObject;Const Propname : string;kinds :
TTypeKinds);

Description
Searches recursively downward from root, looking for the first instance of a published property with the
name Propname, of a type in the set kinds. If found, it creates a TInstanceProperty object to encapsulate
the located property. The Instance property is automatically set to the object instance in which the
property was found.

Remarks
The search involves not only properties of root proper, but recursively all named components contained
by root (in the Components array property).

The Kinds parameter, which limits the search to specific types of properties, is of type TTypeKinds, which
is defined in TYPINFO.INT as follows :

type
 TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,

tkString, tkSet, tkClass, tkMethod);
 TTypeKinds = set of TTypeKind;

See Also
 Create
 CreateFull
 CreateFromPath
 Instance
 Propname

CreateFull Constructor
see also
Applies To
TInstanceProperty

Declaration
Constructor CreateFull(anInstance : TObject;APropInfo : PPropInfo);

Description
Creates an instance of a TInstanceProperty and initializes it with both the Instance value and a pointer to
the RTTI record which describes the instance property the object is to encapsulate.

For the declaration of PPropInfo, check the TYPINFO.INT file in the \DELPHI\DOC directory.

see also
 Create
 CreateFromPath
 CreateFromSearch
 Instance
 Propname

DATE Function
See Also Date/Time Functions A-Z Function Reference
Description
The Date() function returns a date serial number from the values specified as the Year, Month, and Day
parameters.

Syntax
Date(year,month,day)

The year must be between 1 and 9999.
Valid Month values are 1 through 12.
Valid Day values are 1 through 28, 29, 30, or 31, depending on the Month value. For example, the
possible Day values for month 2 (February) are 1 through 28 or 1 through 29, depending on whether or
not the Year value specifies a leap year.

Remarks
If the specified values are not within range, an EXPR_CONVERT_ERROR error is raised. The resulting
value is one plus the number of days between 1/1/0001 and the given date.

See Also
 DATEVALUE NOW
 DAY TODAY
 MONTH YEAR

DATEDIFF Function
Date/Time Functions A-Z Function Reference
Description
Returns the number of days between two dates.

Syntax
DATEDIFF(date1,date2)

date1 and date2 are dateserial numbers. date2 is presumed to be the later date.

DATETOSTR Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the date string representation of a date/time serial number.

Syntax
DATETOSTR(date_serial)

date_serial. is a text string which contains a valid date.

Remarks
This function performs the reverse of the DateValue function.

See Also
 DATEVALUE
 STR
 TIMETOSTR

DATEVALUE Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the date serial number equivalent of the string expression dateStr.

Syntax
DATEVALUE(date_text)

date_text. is a text string which contains a valid date.

Remarks
Valid values for date_text are determined by the International settings in the Windows Control Panel.

See Also
 DATETOSTR
 NOW
 TIMEVALUE
 TODAY

DAY Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns an integer (1 - 31) representing the day component of a date serial number.

Syntax
DAY(date_serial)

date_serial is the date value.

See Also
 DAYNAME
 MONTH
 WEEKDAY
 YEAR

DAYNAME Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the name (for example "Monday", "Friday") of the day on which a date falls.

Syntax
DAYNAME(datenumber)

datenumber is the date serial number for which you wish to find the dayname.

See Also
 DAY
 WEEKDAY

DB Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the depreciation allowance for an asset using the fixed-declining balance method.

Syntax
DB(Cost,Salvage,Life,Period)

Parameter Description
Cost the initial amount paid for the asset. Can be any positive value or 0.
Salvage value of the asset at the end of its life. Can be 0 or any positive value.
Period the period , >= 1, for which depreciation is to be calculated
Life number of periods in the life of the asset.

Remarks
Life and Period must be expressed the same units.

See Also
 DDB
 SYD
 SLN

DDB Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the accelerated depreciation expense for an asset using the Double Declining Balance
Method.

Syntax
DDB(Cost,Salvage,Life,Period)

Parameter Description
Cost the amount paid for the asset
Salvage the amount expected for the asset at the end of the asset's useful life
Life the expected useful life of the asset
Period the time period for which the depreciation expense is to be calculated

Remarks
All arguments are assumed to be numeric values.The following relationships must hold :

Life >= Period >= 1
Cost >= Salvage >= 0

See Also
 DB
 SLN
 SYD

DEGREES Function
See Also Math/Trig Functions A-Z Function Reference
Description
Converts an angle in radians to its equivalent in degrees.

Syntax
DEGREES(x)

Remarks
X is any number floating point or integer value. The resulting value is X * (180/PI)

DLL Function Reference
A-Z Function Call Reference
This section documents the functions exported by the FormulaBuilder DLL according to functional
category. Most functions return one of the EXPR_XXX constants. For an explanation of these, see the
error code reference in the appendix.

Expression Initialization And Disposal
Expression Evaluation
Variable Handling
Constant Handling
Function Handling
Utility Routines
Error Reporting

Note
In addition to the above topics, Delphi/Pascal users should read the topic Preliminary Issues For Delphi
Users before attempting to call any DLL functions.

Data-Aware Classes : Setting The Data Source
Before assigning expression text to the data-aware components, we must specify where the expression
will be deriving its variable data from.

 TDSExpression
TDSExpression has a Dataset property which specifies the TTable or TQuery whose fields will act as
variables. After creating an instance of TDSExpression, set the Database property to an open dataset
before assigning a value to the Formula, Lines or StrFormula properties. This may be done via the Object
Inspector, or programmatically as follows : :

Example
Procedure TForm1.FormCreate(Sender : TObject);
begin
 LineItemsTable.Open;
 exprCost := TDSExpression.Create(self);
 exprCost.Dataset := LineItemsTable;
 exprCost.Formula := 'QUANTITY * UNIT_PRICE';
end;

Notice that the fields of LineItemsTable are now treated as variables.

TDSFilter
TDSFilter has a Datasource property which specifies the BDE datasource whose dataset will be filtered.
After creating an instance of TDSFilter, set the Datasource property to a datasource before assigning a
value to the Formula, Lines or StrFormula properties. This may be done via the Object Inspector, or
programmatically as follows : :

Example
Procedure TForm1.FormCreate(Sender : TObject);
begin
 InvoiceTable.Open;
 Datasource1.Dataset := InvoiceTable;
 Table1Filter.Datasource := Datasource1;
 Table1Filter.Formula := '(TOTAL * (1 + Tax_Rate)) > 3500';
end;

Invoicetable will now be filtered such that only invoices whose post-tax amount is greater than $3500 will
be visible.

TDBExpression
TDBExpression allows us to have expressions based on any open Dataset in a Database. The Database
property specifies which Database to use.

The field syntax is
 '[' TableName '->' FieldName ']'

Example

Database Property
Applies To
TDBExpression

Declaration
Property Database : TDatabase;

Description
Read/write. Database specifies the database (TDatabase) component associated with the
TDBExpression instance. Once set, the TDBExpression will have access to all the fields defined on open
datasets in Database. Note - changing the Database property causes an automatic trigger of the Reparse
method.

Example
TaxExpression.Database := TaxTable.Database;

Dataset Property
Applies To
TDSExpression

Declaration
Property Dataset : TDataset;

Description
Read/write. Dataset specifies the dataset (TTable or TQuery) component associated with the
TDSExpression instance. Once set, the TDSExpression will have access to all the fields defined on the
dataset. Note - changing the Dataset property causes an automatic trigger of the Reparse method.

Example
TaxExpression.Dataset := Form1.Table1;

Datasource Property
Applies To
TDSFilter

Declaration
Property Datasource : TDatasource

Description
Read/Write. Determines the Datasource whose dataset will be filtered. Note that the TDSFilter may fail to
run on SQL-servers, as it was designed for LOCAL databases

Date/Time Functions
For calculation purposes, date/time values (serial numbers) are stored internally as a double, where the
integer portion represents the number of days that have passed since 1/1/0001. Time is stored as the
floating-point part of the value. The floating-point part represents the fractional part of the day, ranging
from 0.0 to 0.9999999, representing the times from 0:00:00 (12 midnight) to 23:59:59 (11:59:59 P.M.)
For example, 0.5 represents noon, 0.75 represents 6:00 P.M.

DATE HOUR TIME
DATEDIFF MINUTE TIMEVALUE
DATETOSTR MONTH TIMETOSTR
DATEVALUE MONTHNAME TODAY
DAY NOW WEEKDAY
DAYNAME SECOND YEAR

Date/Time Serial Numbers
Date/Time serial numbers are used to represent a date and/or time. Internally they are stored as floating
point values (double) where the integer portion represents the date (the number of days elapsed since
1/1/0001). The floating point portion represents the fractional portion of the day. For example 0.5
represents noon (12:00 PM), 0.75 represents 6 PM, and 0 represents midnight.

Date/Time Constants
Date Constants
The format for a date constant is {mm/dd/yy}, with the curly braces being delimiters. The format of the
date entered depends on the Shortdate format settings established in international section of the
Windows Control panel. Note that if a year ranging from 0 to 99 is entered, it is assumed to the year
starting at 1900.

Numeric constants may be added to a date, returning a date

Example:
{10/10/95} + 365 = {10/10/96}

 DAYNAME(20 + Today()) returns the name of the day 20 days from today

Time Constants
The format for a time constant is {hh:mm:ss}. Specifying AM or PM is optional, as are the seconds.
Military (24 hour) time should be used if the AM/PM designator is ommitted.

Examples
HH:MM:SS AM/PM e.g. 10:12:19 PM
HH:MM AM/PM e.g. 12:13 AM
The Long International Time Format chosen as a system default, one of which {rw} is
HH:MM:SS eg 15:45:30

The Short International Time Format chosen as a system default, one of which is HH:MM
eg. 10:35

Date/Time Constants
The date and time may be combined as follows :

{mm/dd/yy hh:mm:ss}

Example
{10/12/95 10:25:30 am}
{10/10/1885 21:30}

Please refer to the Date Functions section of the Function Reference for additional details of the date
type.

See Also
 RADIANS Function

Callback Error Reporting Example
Suppose we want to limit the range of values the user can enter as arguments to the ROMAN function
from Example 1. The ROMAN function, for example, does not handle negative numbers. Also remember
from our previous discussion that FormulaBuilder does automatic type conversions between compatible
types to ensure that the correct parameter type is passed to a function. This would allow the user of the
ROMAN function to type 'ROMAN(15.43)', which would be evaluated as ''ROMAN(15)'. We will disallow
the use of floating point numbers in our function .

{ RomanFunc with range checking }
Procedure RomanProc(paramcount : byte;
 const params : TActParamList;
 var retvalue : TValueRec;
 var errcode : integer;
 Exprdata : longint); export;
var number : longint;
 roman : string[40];
begin
 number := params[0].vFloat;
 { complain if there is a fractional part }
 if (Frac(params[0].vFloat) - 1E6) > 0 then
 Errcode := EXPR_TYPE_MISMATCH
 else
 if number < 0 then
 errcode := EXPR_DOMAIN_ERROR; { param is out of domain of function }
 else { definition }
 begin
 roman := Romanize(number)+#0;
 retvalue.vpString := FBCreateString(@Roman[1]);
 end;
end;

If a negative or floating point value were passed into the function (for example Expression1.formula
= 'Roman(-1)') then evaluation of the expression would terminate with the Status Property of the
TExpression being set to EXPR_DOMAIN_ERROR.

We will have to modify our registration slightly to change the single parameter to a float rather than an
integer :

RomanFnId := FBRegisterFunction('ROMAN',vtSTRING,'f',1,RomanProc);

FormulaBuilder Delphi Component Reference
The FormulaBuilder package includes Delphi components that simplify the use of the FormulaBuilder DLL
engine,including two components to handle expressions based on BDE Datasets.

"Standard" Components

TExpression

TRTTIExpression

Data-Aware Components

TDSExpression

TDBExpression

TDSFilter

For the most part the Tasks involved in using these classes is common to all of them.

Error Handling
You may select how errors are handled in TExpression and TDBExpression by setting the UseExceptions
property. If UseExceptions is set to false, errors are returned in the Status property, otherwise an
exception of type EFBError is raised.

EFBError
EFBDBError

Demoware Version
The Demoware Version of FormulaBuilder displays a registration reminder for each task which calls the
DLL. It is otherwise fully functional. The registered version does not contain this reminder.

DescendsFrom Function
Unit
FB_RTTI

Declaration
Function DescendsFrom(Ancestor : TObject;Test : TObject):Boolean;
Description
Returns true if Test is of a type which decends from the type of Ancestor.

Example
DescendsFrom(AComponent, Form1) is true for a component AComponent and a
form Form1

Destroy Destructor
See Also
Applies to
All FormulaBuilder Components

Declaration
Destructor Destroy; Override;
Description
Disposes of the component and disposes of all associated memory. If your Delphi application is the only
application using the engine, and the last expression frees itself, the DLL will automatically unload.

See Also
 Clear Method
 Create Constructor

Determining If Expression Text has been Assigned
We can determine whether text has been assigned to our TExpression instance by querying the IsNull
property. A value of TRUE indicates that text has been assigned to one of the Formula, StrFormula or
Lines properties. IsNull also becomes true after a call to the TExpression.Clear method.

Determining an Expression's Return Type
As soon as the text expression is assigned to the Formula, StrFormula or Lines properties of a
TExpression or descendant class, the engine "compiles" the text expression into a tokenized form. A
benefit of this process is that the result type of the expression may then be determined without evaluating
the expression. For example, if we had set the Formula property to each of the following strings, the
ReturnType property would reflect the type of result that would be expected :

Text Expression Return Type
'Sin(X) / LN(X^2)' vtFLOAT
'TODAY() - 365' vtDATE
'WEEKDAY(TODAY()) > 5' vtBOOLEAN

You may use the ReturnType property to restrict expression types to those that fit your particular
application domain.

Note There are certain built-in functions (CHOOSE and IIF for example) which may return any of the
standard FormulaBuilder types. If these functions are used in a text expression, FormulaBuilder will try to
determine the return type based on the other operators and operands used in the expression. In certain
cases it is impossible for the engine to figure out the return type beforehand. In these instances a vtANY
is returned.

Disclaimer
License Agreement
THIS SOFTWARE AND THE ACCOMPANYING FILES ARE SOLD "AS IS". THE AUTHOR DISCLAIMS
ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING (WITHOUT LIMITATION), THE
WARRANTIES AS TO PERFORMANCE OF MERCHANTABILITY, OR ANY OTHER WARRANTIES.
Because of the various hardware and software environments in which FormulaBuilder may be used, NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS OFFERED. The author assumes no
liability for damages, direct or consequential, which may result from the use of FORMULABUILDER.

Good data processing procedure dictates that any program be thoroughly tested with non-critical data
before relying on it. The user must assume the entire risk of using the program. ANY LIABILITY OF
THE SELLER WILL BE LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT OR REFUND OF
PURCHASE PRICE.

Although this documentation covers C/C++ as well as Visual Basic and Delphi, the author makes no claim
or guarantee that the functionality of FormulaBuilder version 1.0 is available to C/C++. Testing with other
Windows programming languages is ongoing, and they should be fully supported in an upcoming release.

All rights not specifically set forth above are reserved by Clayton Collie and YGB Software, Inc..

Distribution
Please Read the License Agreement for important information. You are bound by the licensing restrictions
contained in that document.

Demoware Version
Provided that you verify that you are distributing the Demoware Version you are hereby granted
permission to make and distribute unlimited copies of the Demoware version of this software and
documentation, provided that such copies are complete and unmodified duplicates of the original. There
is no charge for any of the above.

You are specifically prohibited from charging, or requesting donations, for any such copies, however
made; and from distributing the software and/or documentation with other products (commercial or
otherwise) without prior written permission, with one exception: Disk Vendors approved by, and in good
standing with the Association of Shareware Professionals are permitted to redistribute FormulaBuilder,
subject to the conditions in this license, without specific written permission. However, under NO
CONDITION are Software Of The Month Club (SOMC) inc or Digital Impact permitted to copy or
distribute any portion of the software or its documentation.

Registered Version
UNDER NO CIRCUMSTANCE SHOULD ANY PORTION OF A REGISTERED VERSION OF
FORMULABUILDER BE DISTRIBUTED except as outlined below :

Distributing FormulaBuilder Applications
Redistributing Files
You can redistribute the run time version of the software according to the terms of the license agreement.
you can ship the following files with your application:

File Description
FBCALC.DLL FormulaBuilder Calculation Engine DLL
USERDOCS.RT
F

RTF file containing documentation on the FormulaBuilder built-in
functions and their use. You may modify and distribute this as
appropriate to your end users.

EFBError, EFBDBError Class
See Also
Exception classes for the FormulaBuilder class wrappers. When the UseExceptions property of any
instance of the FormulaBuilder Component Classes is set to true, FormulaBuilder will raise an exception
of type EFBError and EFBDBError respectively, with its ErrorCode property set to the EXPR_XXX
constant describing the error. In addition to the properties and methods inherited from TException,
EFBError provides a constructor CreateEcode and a property ErrorCode.

Create
Constructor CreateEcode(const ecode : integer)

Create an instance of EFBError with the offending error passed in Ecode.

Errcode
Property ErrorCode : integer;

Returns the EXPR_XXX constant describing the error. This is the same value passed in to the
constructor.

EXP Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the value of the mathematical constant e raised to the power x.

Syntax
EXP(X)

Remarks
This function is the inverse of the LN function, i.e. EXP(LN(X)) = x

See Also
 LN
 LOG

EXPR_CONVERT_ERROR = 32

EXPR_DOMAIN_ERROR = 20

EXPR_DUPLICATE_IDENT = 30

EXPR_FP_OVERFLOW = 22

EXPR_FP_UNDERFLOW = 23

EXPR_INT_OVERFLOW = 24

EXPR_INVALID_CALLBACK = 51

EXPR_INVALID_FUNCTION = 13

EXPR_RANGE_ERROR = 19

EXPR_SUCCESS = 1

EXPR_TYPE_MISMATCH = 10

EXPR_UNKNOWN_IDENT = 5

EXPR_XXX Constants
The EXPR_XXX constants are passed back from FormulaBuilder functions to indicate the status of an
operation.

CONSTANT VALUE DESCRIPTION
EXPR_SUCCESS 1 SUCCESS
EXPR_MISSING_PAREN 2 Parenthesis expected
EXPR_BAD_EXPRESSION 3 Invalid Expression
EXPR_BAD_ASSIGNMENT 4 Bad assignment syntax
EXPR_UNKNOWN_IDENT 5 Unknown Identifier
EXPR_LINE_TOO_LONG 6 Line Too Long. String constants and identifiers

cannot exceed 255 characters in length..
EXPR_INVALID_TOKEN 7 Invalid Token
EXPR_INVALID_CHAR 8 Invalid Character
EXPR_MISSING_PARAM 9 Parameter Expected
EXPR_TYPE_MISMATCH 10 The operand types in an operation were

incompatible.
EXPR_INVALID_NUMBER 11 Invalid numeric format.
EXPR_MISSING_VARIABLE 12 Variable missing. Avariable encountered in the

parsing phase is missing in the evaluation phase.
EXPR_INVALID_FUNCTION 13 Invalid function
EXPR_ZERO_DIVISION 14 Division by zero
EXPR_STACK_OVERFLOW 15 Evaluation stack overflow
EXPR_UNEXPECTED_EOS 16 Unexpected end of stream
EXPR_INVALID_DATE 17 Invalid Date format
EXPR_IDENTIFIER_EXPECTED 18 Identifier expected
EXPR_RANGE_ERROR 19 Value out of range
EXPR_DOMAIN_ERROR 20 the parameter for a function exceeds the function's

domain of definition.
EXPR_MATH_ERROR 21 Math Error
EXPR_FP_OVERFLOW 22 Floating point overflow
EXPR_FP_UNDERFLOW 23 Floating point underflow
EXPR_INT_OVERFLOW 24 Integer overflow
EXPR_INVALID_OP 25 Invalid operation
EXPR_VARIABLE_EXPECTED 26 Variable expected
EXPR_MISSING_OPERATOR 27 Missing operator
EXPR_MISSING_OPERAND 28 Missing operand
EXPR_CONSTANT_EXPECTED 29 Constant expression expected
EXPR_DUPLICATE_IDENT 30 Duplicate identifier
EXPR_SYNTAX_ERROR 31 Syntax error
EXPR_CONVERT_ERROR 32 An error occurred during type conversion
EXPR_INVALID_TYPE 33 An invalid type was passed to a function or an

operation between two incompatible operands was
attempted

EXPR_INVALID_HANDLE 51 An invalid expression handle was passed to a DLL
function

EXPR_INVALID_CALLBACK 53 An invalid or NULL callback was passed to a DLL
function

EXPR_FORMULA_TOO_COMPL
EX

54 The function is too complex to be evaluated

The following errors are generated by the data-aware Delphi classes TDSExpression , TDBExpression
and TDSFilter.

CONSTANT VALUE DESCRIPTION
EXPR_INVALID_DATABASE 100 An invalid or null database was passed to the

Database property, or the property was not set.
EXPR_INVALID_TABLENAME 111 An invalid table name exists in the input expression.

The table does not exist in the database.
EXPR_INVALID_FIELDNAME 113 An invalid fieldname was specified. The fieldname

does not exist for the specified table.
EXPR_INVALID_TABLE 115 A problem occurred with a field referenced by the

expression during the evaluation phase.
EXPR_INVALID_FIELD 117 A problem occurred with a table referenced by the

expression during the evaluation phase.

EXTRACT Function
See Also String Functions A-Z Function Reference
Description
Returns the nth delimited word from a string.

Syntax
Extract(N,Source,Delims)

N is the number of the word you wish to extract.
Source is the string from which to extract a word.
Delims is a string of delimiters which defines a word.

See Also
 WORDCOUNT

See Also
 TExpression
 TDBExpression
 TDSExpression
 TDSFilter
 TRTTIExpression

Error Reporting Functions
Most FormulaBuilder DLL functions return one of the EXPR_XXX constants to indicate the status of an
operation. The FBGetErrorString function returns a text message giving the explanation of an error code.

EvaluatePrim Method
See Also
Applies to
TExpression, TDBExpression, TDSExpression, TRTTIExpression

Declaration
Procedure EvaluatePrim(var value : TVALUEREC); virtual;
Description
Evaluates the expression and returns the result in value. See the declaration of TValueRec for details.
Use this function if you need access to the results of a calculation in native (as opposed to string) format.
The tag field of value (vtype) gives the result type, and the appropriate field of the union/variant contains
the resulting value. Don’t forget to to call FBFreevalue to dispose of any memory associated with value .

See Also
 AsString AsFloat
 AsBoolean AsInteger
 AsDate

StringResult

ExprData Data Passing : Example 2
The following code provides an example of accessing the calling TDSExpression instance from a
callback. It duplicates existing BDE functionality and is not especially efficient, but it should give you an
idea of the possibilities of using the ExprData parameter.

The Function
This example implements the DBCOUNT function, which returns the number of records in a dataset
which matches a certain criterion.

DBCOUNT(<Filter>)

If Filter is ommitted, a count of all records in the dataset is returned.

The Code
(***)

Uses Sysutils,DB,DBTables,FBDBCOMP,FBCALC;
...

Var
 fnidDBCOUNT : integer;

Procedure PrepareDataset(dataset : TDataset; var bookmark : TBookmark);
begin
 {Disable any components that reference the dataset. Don't
 want those updating while we traverse the table.}
 dataset.DisableControls;
 BookMark := dataset.GetBookMark;
end;

Procedure RestoreDataset(dataset : TDataset; var bookmark : TBookmark);
begin
 With dataset do
 begin
 GotoBookmark(BookMark);
 FreeBookmark(BookMark);
 EnableControls;
 end;
end;

{ DBCOUNT(<Criteria>) }

Procedure DBCOUNT(nParamcount : byte;
 const params : TActParamList;
 var ReturnVal : TVALUEREC;
 var nErrCode : Integer;
 ExprData : longint); export;
var
 exprFilter : TDSExpression;
 tblDBCOUNT : TDataset;
 lCount : longint;
 BookMark : TBookMark;
 ntype : byte;

begin
 TRY

 {Cast ExprData back to its original type. Works only if this proc is called }
 {from a TDSExpression or Descendant }
 tblDBCOUNT := TDSExpression(ExprData).DataSet;
 EXCEPT
 nErrCode := EXPR_INVALID_DATASET; { Invalid_Expression }
 exit;
 END;
 if (nParamcount = 0) or (params[0].vpString^ = '') then
 begin
 ReturnVal.vInteger := tblDBCOUNT.RecordCount;
 exit;
 end;
 exprFilter := TDSExpression.Create(NIL);
 with exprFilter do
 begin
 UseExceptions := False;
 Dataset := tblDBCOUNT;
 Formula := params[0].vpString^;
 nErrCode := Status;
 if nErrCode <> EXPR_SUCCESS then
 begin
 Free;
 Exit;
 end;
 if not (ReturnType = vtBOOLEAN) then
 begin
 nErrCode := EXPR_TYPE_MISMATCH; { EXPR_INVALID_FILTER }
 free;
 exit;
 end;
 end; {with }
 TRY
 PrepareDataset(tblDBCOUNT,BookMark);
 lCount := 0;
 TRY
 tblDBCOUNT.First;
 while not tblDBCOUNT.EOF do
 begin
 inc(lcount,ord(exprFilter.AsBoolean));
 if exprFilter.Status <> EXPR_SUCCESS then
 begin
 nErrCode := exprFilter.Status;
 RestoreDataset(tblDBCOUNT,BookMark);
 exit;
 end;
 tblDBCOUNT.Next;
 end;
 ReturnVal.vInteger := lCount;
 FINALLY
 RestoreDataset(tblDBCOUNT,BookMark);
 END;
 FINALLY
 exprFilter.Free;
 END;
end; { DBCount }

Procedure RegisterFunction;
begin
 InitFbuilder;
 fnIdDBCOUNT := FBRegisterFunction('DBSUM',vtINTEGER,'s',0,DBCOUNT);
end;

Procedure UnRegisterFunctions; far;
begin
 If not FBLoaded then exit;
 FBUnregisterFunction(fnIdDBCOUNT);
 FreeFBuilder;
end;

INITIALIZATION
 RegisterFunction;
 AddExitProc(UnRegisterFunctions);
END.

ExprData Data Passing Example
Observe the following code which implements the function WHOCALLED. The implicit typecast works
only if WHOCALLED is called from a TExpression or descendant class:

 Procedure ReturnCallerProc(paramcount : byte;
 const params : TActParamList;
 var retvalue : TValueRec;
 var errcode : integer;
 exprdata : longint); export;
 var i : integer;
 expr : TExpression absolute exprdata; {implicit typecast}

 tmpstr : string;

 begin
 try {verify we are indeed being called from a TExpression }
 tmpstr := 'Called from '+Expr.ClassName+'. Formula = '+
 Expr.Formula + #0;
 Except
 on EGPFault do tmpstr := 'NOT called from a TExpression !'#0;
 end;
 retvalue.vpString := FBCreateString(@tmpstr[1]);
 end;

Register the function as follows :

 FBRegisterFunction('WHOCALLED',vtSTRING,NIL,0,ReturnCallerProc);

then use 'WHOCALLED()' in an expression.

This can be especially useful for subclasses of TExpression which add additional methods and properties.
Using this method, we have access to the public and published methods and properties of the
TExpression instance.

Expression Evaluation Functions
The following functions relate to determining the type, and finding the result of an expression previously
set with FBSetExpression.

Function Description
FBEvaluate Evaluate the expression, returning the result as a string,

regardless of the return type.
FBEvaluatePrim Evaluate the expression, returning the result as a

TValueRec
FBEvalExpression Performs a one function expression evaluation given a string

containing a valid expression.
FBFreeValue Dispose of all memory associated with a TValueRec

structure.
FBGetBooleanResult Evaluate the expression, returning its boolean result.
FBGetDateResult Evaluate an expression, returning its date/time result
FBGetFloatResult Evaluate an expression, returning its floating point result
FBGetIntegerResult Evaluate an expression, returning its integer (longint) result
FBGetStringResult Evaluate an expression, returning its string result
FBReturnType Determine the return type of the expression

Expression Initialization And Disposal
The following functions deal with initializing an expression, setting and clearing its text (formula), and
disposing of expressions and their associated memory.

FBInitExpression
FBFreeExpression
FBSetExpression
FBReparseExpression
FBGetExpression
FBClearExpression

Extending FormulaBuilder
FormulaBuilder provides added flexibility by allowing the programmer to supplement the built-in functions
and handle variable processing external to the core calculation engine.

Installing New Functions
External Variable/Field Handling

External Functions : Example 1
We will start with a simple, one parameter function ROMAN, which takes an integer value and returns the
equivalent Roman numeral string.

 Procedure RomanProc(paramcount : byte;
 const params : TActParamList;
 var retvalue : TValueRec;
 var errcode : integer;
 Exprdata : longint); export;
 var number : longint;
 roman : string[40];
 begin
 number := params[0].vInteger;
 roman := Romanize(number)+#0; { code for Romanize is in FBMisc.PAS }
 retvalue.vpString := FBCreateString(@Roman[1]);
 end;

We must register the function to make it available to expressions. This is accompished with the
FBRegisterFunction function call.

RomanFnId := FBRegisterFunction('ROMAN',vtSTRING,'i',1,RomanProc);

The first argument is, of course, our new function name. The second is the return type. Since our function
takes a single integer argument, the params argument is set to 'i'. The fourth parameter to
FBRegisterFunction tells the parser the minimum number of parameters the parser should expect. The
final parameter, of course, is a pointer to the function which implements "ROMAN".

Thats It ! Youve successfully added a function to FormulaBuilder. "ROMAN" will be treated like any of
FormulaBuilder's other functions. This can be verified by the code similar to the following :

 Expression.Formula := 'ROMAN(1996)';
 Edit1.Text := Expression.AsString;

External Functions : Example 2
Consider the Compound Interest Formula

A = P * (1 + i)^n

where A is the accumulated value, P is the principal, I is the rate of interest and n is the number of
periods. Here is how the function could be implemented :

Procedure CompoundInterestProc(paramcount : byte;
 const params : TActParamList;
 var Retvalue : TValueRec ;
 var errcode : integer;
 ExprData : longint); export;

var p, I , n : double;
 A : extended;
begin
 p := params[0].vFloat;
 I := params[1].vFloat;
 N := params[2].vFloat;
 A := P * power(1 + i,n);
 retvalue.vFloat := A;
end;

To register the function, we would do the following :

MyFuncId := FBRegisterFunction(‘CompInterest’,vtFLOAT,
’fff’,3,CompoundInterestProc);

As we can see, our function name is 'CompInterest', it returns a float, has 3 float parameters, requires all
three parameters, and is implemented by the callback CompoundInterestProc.

External Functions and the vtANY (Variant) type
Occasionally we need to use functions whose parameter or return types are not known before we execute
the function. If we consider spreadsheets, for example, we can use aggregation functions (SUM, AVG,
etc) on ranges of cells which may contain text, formulas, floating point values, boolean values, and so on.
The built-in function STR also takes any expression type and returns its text equivalent. In order to allow
this flexibility, FormulaBuilder uses the vtANY (variant) type.

How the Parser Treats vtANY
When a parameter is described as variant, the parser suspends type checking for the parameter when
the expression is tokenized. The callback function will have to use the vtype field of the appropriate
parameter to determine the actual type passed to the callback procedure. It should be noted that a
TValueRec passed by FormulaBuilder NEVER has its vtype field set to vtANY. The vtANY constant simply
lets the parser know that any value type may be entered as a parameter or returned from a function.
Similarly, the value type field of the Retvalue parameter should be set to one of the other vtXXX constants
describing the function's return type, otherwise error EXPR_TYPE_MISMATCH will occur.

The following are examples of how to use the variant types in external functions :

Example 1
Example 2
Example 3

External Variable/Field Handling
Callback routines extend the flexibility of FormulaBuilder by adding the capability of handling variables
and fields in programmer written code. Variable data can then be extracted directly from the data source
without reparsing the expression. Variables and fields are handled identically, so the discussion on
variable handling applies equally to fields.

Establishing Callbacks
To register callbacks to handle variables and fields, use the FBSetVariableCallbacks function.

Callback Function Types
TCBKFindVariable
TCBKGetVariable
TCBKSetVariable

The Callback Handling Process
For the sake of clarity in the following discussion, you should revisit the FormulaBuilder evaluation
process as it relates to variable and field callbacks.

In the Parsing Phase, the string formula is decomposed into its constituent parts - variables, fields,
operators and functions. When the FormulaBuilder encounters an identifier it does not recognize, it calls
the callback routine of type TCBKFindVariable to allow the programmer to determine whether the
identifier represents a valid variable. During the evaluation phase the variable callback routine of type
TCBKGetVariable is called to furnish the engine with the current value of the variable. If the original
expression contained an assignment statement which updated the variable (the variable was the LValue
of the expression) the TCBKSetVariable routine would be called with the result of the evaluation to allow
the programmer to update the variable or field.

Delphi Users
For a more thorough discussion of this subject, see the section Using FormulaBuilder with Delphi.

FACT Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the factorial of a positive number.

Syntax
FACT(number)

number is any positive number

Remarks
The factorial of a number X is equal to 1*2*3*...X. If number is a floating point value, it will be truncated to
an integer before the calculation is performed..

See Also
 PRODUCT

FBAddBooleanConstant Function
See Also Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBAddBooleanConstant(name : Pchar;value : BOOL):integer;

C/C++
FBERROR FBAPI FBAddBooleanConstant(LPSTR name,BOOL value);

VB
Function FBAddBooleanConstant% LIB "FBCALC.DLL" (ByVal name$,ByVal value%)

Description
Adds a boolean constant to FormulaBuilder’s global symbol table.

Example
FBAddBooleanConstant(‘Approved’, -1)

See Also
 FBAddConstantPrim
 FBAddDateConstant
 FBAddNumericConstant
 FBAddStringConstant
 FBFreeConstant

FBAddConstantPrim Function
See Also Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBAddConstantPrim(name : pchar;var value : TValueRec):Integer;

C/C++
FBERROR FBAPI FBAddConstantPrim(LPSTR name,LPVALUEREC value);

Description
Add a constant in the form of a TValueRec. Do NOT dispose of value with the FBFreeValue call.

See Also
 FBAddBooleanConstant
 FBAddDateConstant
 FBAddNumericConstant
 FBAddStringConstant
 FBFreeConstant

FBAddDateConstant Function
see also example Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBAddDateConstant(name : Pchar;value : TFBDate):integer;

C/C++
FBERROR FBAPI FBAddDateConstant(LPSTR name,TFBDate value);

VB
Function FBAddDateConstant% Lib "FBCALC.DLL" (ByVal name$,ByVal value#)

Description
Add a date constant name to the engine with value value.

FBAddDateConstant Example

FBlpzToFBDate('10/10/32',MomsBDate)
FBAddDateConstant(‘MomsBDay’,MomsBDate);
FBSetExpression(expr,'iif(Month(Today()) = Month(MomsBDay)) &(Day(Today()) =
Day(MomsBDay)),”Aren't you forgetting something ?”, “Safe for the moment”)’);

See Also
 FBAddBooleanConstant
 FBAddConstantPrim
 FBAddNumericConstant
 FBAddStringConstant
 FBFreeConstant

FBAddNumericConstant Function
See Also Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBAddNumericConstant(name : Pchar;value : double):integer;

C/C++
FBERROR FBAPI FBAddNumericConstant(LPSTR name,double value);

VB
Function FBAddNumericConstant% Lib "FBCALC.DLL" (ByVal name$,ByVal value#)

Description
Adds a numeric constant to the engine.

Example
Pascal
FBAddNumericConstant(‘E’,2.718282)

C/C++ and VB
FBAddNumericConstant("e",2.718282);

See Also
 FBAddBooleanConstant
 FBAddConstantPrim
 FBAddDateConstant
 FBAddStringConstant
 FBFreeConstant

FBAddStringConstant Function
See Also example Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBAddStringConstant(name : Pchar;value : pchar):integer;

C/C++
FBERROR FBAPI FBAddStringConstant(LPSTR name,LPSTR value);

VB
Function FBAddStringConstant% Lib "FBCALC.DLL" (ByVal name$,ByVal value$)

Description
Adds a string constant to named name with value value FormulaBuilder’s global symbol table.

FBAddStringConstant Example
FBAddStringConstant("company","YGB Software")

See Also
 FBAddBooleanConstant
 FBAddConstantPrim
 FBAddDateConstant
 FBAddNumericConstant
 FBFreeConstant

FBAddVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBAddVariable(handle : HEXPR;name : pchar;vtype : byte):integer;

C/C++
FBERROR FBAPI FBAddVariable(HEXPR handle,LPSTR name,BYTE vtype);

VB
Declare Function FBAddVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
name$,ByVal vtype%)

Description
Adds a variable of type vtype to the engine for the expression with handle handle. name then becomes
available for use in expressions. The initial value will be the NULL representation appropriate to the
variable’s type.

Remarks
A single expression can own up to 16,000 variables, memory permitting. Parsing may be slower for a
large number of variables, but there is no performance penalty in the actual evaluation process.

See Also
 FBParseAddVariable
 FBFreeVariable

The FBCALC Import Unit
The FBCALC unit is a dynamic import unit to interface with the FormulaBuilder DLL. Since the calculation
engine is explicitly loaded, we must ensure that the DLL is loaded before attempts are made to call its
exported functions. If you intend to make calls to DLL functions outside of those encapsulated in
components, please take a minute to read the following topics :

Routines
CheckLoadFB
FBLoaded
FreeFBuilder
InitFBuilder

All other routines that access the functionality of the engine are documented in the DLL Reference.

FBClearExpression Function
See Also Expression Initialization and Disposal DLL Reference A-Z Function Reference
Pascal
Function FBClearExpression(handle : HEXPR):integer;

C/C++
FBERROR FBAPI FBClearExpression(HEXPR handle);

VB
Declare Function FBClearExpression% LIB "FBCALC.DLL" (ByVal handle&)

Description
Clears the internal state of the expression. All defined variables are freed and the expression handle is
returned to the state it would be in after a FBInitExpression call.

See Also
 FBFreeExpression
 FBInitExpression

FBComp Unit
The FBComp unit contains the declarations for TExpression and its associated objects, types, and
routines.The FBComp unit is automatically added to the uses clause whenever you add a TExpression
component to your form.The following items are declared in the FBComp unit:

Components
TExpression

Objects
EFBError

Types
TFindVariableEvent
TGetVariableEvent
TSetVariableEvent
TVariable

Routines
Register
GetFunctionPrototypes
ValueAsString

FBCopyValue Function
See Also Utility Routines DLL Reference A-Z Function Reference
Pascal
Function FBCopyValue(value : TVALUEREC):TValueRec;

C/C++
TVALUEREC FBCopyValue(TVALUEREC value);

Description
Returns a copy of the value structure. You should use this method instead of manually copying structure
items to protect yourself against changes in the implementation of TValueRec or its field types.

See Also
 FBFreeValue

FBCreateString Function
See Also Utility Routines DLL Reference A-Z Function Reference
Pascal
Function FBCreateString(str : pchar):TFBString;

C/C++
TFBSTRING FBAPI FBCreateString(LPSTR str);

Description
Creates a FormulaBuilder string (a Borland Delphi/Pascal Pstring) from a null-terminated string. This may
be used when setting the vpString component of the TValueRec union/variant. This routine is included for
the convenience of C/C++ programmers who wish to use the more advanced features of FormulaBuilder,
hence needing access to the TValueRec type.

See Also
 FBStrncpy

FBDBComp Unit
The FBDBComp unit contains the declarations for the FormulaBuilder data-aware components. This unit
is automatically added to the uses clause whenever you create a add a data-aware component to your
form.The following items are declared in the FBDBComp unit:

Components
TDBExpression
TDSExpression
TDSFilter

Objects
EFBDBError

Routines
Register
FieldDataType
GetErrorString
IsValidDBExpression

FBDateToPasString Function
Utility Routines DLL Reference A-Z Function Reference
Declaration
Function FBDateToPasString(date : TFBDate):String;

Description
Converts a FormulaBuilder date type to a Pascal String.

FBEnumFunctions Function
Example Function Handling Routines DLL Reference A-Z Function Reference
Pascal
Function FBEnumFunctions(fncbk : TCBKEnumFunctions ; Enumdata :
longint):integer;

C/C++
FBERROR FBAPI FBEnumFunctions(TCBKEnumFunctions fncbk,LONG Enumdata);

Description
Enumerate all registered functions, calling fnCBK for each. The parameter Enumdata is passed to the
callback fnCBK on each iteration. Note that since Visual Basic does not support callbacks, this function is
unavailable for that environment.

FBEnumFunctions Example
Delphi
The following example shows how to use the FBEnumFunctions call to obtain a list of the names of all
registered functions. Notice the use of typecasting with the EnumData parameter.

Function getFuncNames(name : pchar;
 vtype : byte;
 parms : pchar;
 minPrms : byte;
 EnumData : longint):integer; export;
var List : TStringList absolute EnumData; { implicit typecast }
begin
 if not Assigned(List) then
 List := TStringList.Create;
 List.Add(strpas(vname));
end;
Function getFunctionNames : TStringList;
begin
 Result := TStringList.Create;
 FBEnumFunctions(getFuncNames,Longint(Result));
end;

C/C++
typedef char *StringList[120], *LPStringList;
static int iCount = 0;

FBERROR FBAPI EXPORT getFuncnames(LPCSTR name,BYTE vtype,LPCSTR parms,BYTE
minPrms,LONG EnumData)
{
 *(LPStringList(EnumData))[iCount++] = name;
};

StringList getFunctionNames(LPINT count)
{
 iCount = 0;
 StringList List;

 FBEnumFunctions(getFuncNames,LONG(&List));

 *count = iCount;
 return List ;
}

FBEvalExpression Function
See Also Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBEvalExpression(expr : pchar;var retType : datatypes;buf : pchar;
buflen : word):integer;

C/C++
FBERROR FBAPI FBEvalExpression(LPSTR expr,LPBYTE retType,LPSTR buf,WORD
buflen);

VB
Declare Function FBEvalExpression% Lib "FBCALC.DLL (ByVal expr$,retType%,ByVal
buf$,ByVal buflen%)

Description
Perform a single operation expression evaluation. Evaluates the formula expr, returning its return type in
retType, and up to buflen characters of the string representation of its result in buf.

See Also
 FBEvaluate
 FBEvaluatePrim

FBEvaluate Function
See Also Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBEvaluate(handle : HEXPR;buf : pchar;buflen : word):integer;

C/C++
FBERROR FBAPI FBEvaluate(HEXPR handle,LPSTR buf,WORD buflen);

VB
Declare Function FBEvaluate% lib "FBCALC.DLL" (ByVal handle&,ByVal buf$,ByVal
buflen%)

Description
Evaluates the expression previously set by FBSetExpression and copies the null-terminated string result
to the buffer pointed to by buf. The programmer should set buflen to the maximum number of characters
that can be copied to buf. This is the most efficient way to recalculate an expression that has not changed
since a call to FBSetExpression. This is because the FBEvaluate performs its calculations without having
to reparse the input expression. This is especially beneficial in loops where only the value of variables
change.

See Also
 FBEvaluatePrim FBGetFloatResult

FBGetBooleanResult

 FBGetIntegerResult

 FBGetDateResult FBGetStringResult

FBEvaluatePrim Function
See Also Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBEvaluatePrim(handle:HEXPR;var value : TVALUEREC):integer;

C/C++
FBERROR FBAPI FBEvaluatePrim(HEXPR handle,LPVALUEREC value);

Description
Evaluates the expression previously set by FBSetExpression and returns the result in value. See the
declaration of TValueRec for details. Use this function is you need access to the results of a calculation in
native (as opposed to string) format. The tag field of value (vtype) gives the result type, and the
appropriate field of the union/variant contains the resulting value. Don’t forget to to call FBFreevalue to
dispose of any memory associated with value.

See Also
 FBEvaluate FBGetFloatResult

FBGetBooleanResult

 FBGetIntegerResult

 FBGetDateResult FBGetStringResult

FBFreeConstant Function
See Also Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBFreeConstant(name : pchar):integer;

C/C++
FBERROR FBAPI FBFreeConstant(LPSTR name);

VB
Declare Function FBFreeConstant% Lib "FBCALC.DLL" (ByVal name$)

Description
Removes the constant named name from FormulaBuilder’s symbol table and frees all associated
memory.

See Also
 FBFreeConstants
 FBFreeVariable

FBFreeConstants Function
See Also Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBFreeConstants :integer;

C/C++
FBERROR FBAPI FBFreeConstants();

Syntax(VB)
Declare Function FBFreeConstants% Lib "FBCALC.DLL" ()

Description
Removes ALL constants from FormulaBuilder’s symbol table. Since constants are system global, this
should only be called with great caution !

See Also
 FBFreeConstant
 FBFreeVariableList

FBFreeExpression Function
See Also Expression Initialization and Disposal DLL Reference A-Z Function Reference
Pascal
Function FBFreeExpression(handle : HEXPR) : integer;

C/C++
FBERROR FBAPI FBFreeExpression(HEXPR handle);

VB
Declare Function FBFreeExpression% Lib "FBCALC.DLL" (ByVal handle&)

Description
Frees all memory associated with an expression. Handle is the same as was returned with the
FbInitExpression call.

See Also
 FBClearExpression
 FBInitExpression

FBFreeValue Function
See Also Utility Routines DLL Reference A-Z Function Reference
Pascal
Procedure FBFreeValue(var value : TValueRec);
C/C++
void FBAPI FBFreeValue(LPVALUEREC value);

Description
FBFreeValue disposes of any memory associated with value. This is only strictly necessary when
value.vtype is vtSTRING.

See Also
 FBCopyValue

FBFreeVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBFreeVariable(handle : HEXPR;name : pchar):integer;
C/C++
FBERROR FBAPI FBFreeVariable(HEXPR handle,LPSTR name);

VB
Declare Function FBFreeVariable% Lib "FBCALC.DLL"(ByVal handle&,ByVal name$)

Description
Free all memory associated with the variable name and remove it from the expressions variable list.

See Also
 FBAddVariable
 FBFreeVariableList

FBFreeVariableList Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBFreeVariableList(handle : HEXPR) : Integer;

C/C++
FBERROR FBAPI FBFreeVariableList(HEXPR handle);

VB
Declare Function FBFreeVariableList% lib "FBCALC.DLL" (ByVal handle&)

Description
Dispose of all declared variable for the given expression. This is done implicitly on a FBFreeExpression
call.
Note. This >>>will << cause a problem, and possibly a GPF, if any of the variables were referenced in
the expression referenced by handle, and an attempt is made to evaluate the expression.

See Also
 FBAddVariable
 FBFreeVariable

FBGetBooleanResult Function
See Also Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBGetBooleanResult(handle : HEXPR;var value : BOOL):integer;

C/C++
FBERROR FBAPI FBGetBooleanResult(HEXPR handle,LPBOOL value)

VB
Declare Function FBGetBooleanResult% LIB "FBCALC.DLL" (ByVal handle&,value%)

Description
Evaluates the expression with handle handle, and returns the boolean result in value. If the return type of
the expression is not vtBOOLEAN, FBGetBooleanResult returns EXPR_TYPE_MISMATCH. The return
type of an expression can be determined with the FBGetReturnType call.

See Also
 FBEvaluate
 FBEvaluatePrim
 FBGetReturnType

FBGetBooleanVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetBooleanVariable(handle : HEXPR;vname : pchar;var value : BOOL);

C/C++
FBERROR FBAPI FBGetBooleanVariable(HEXPR handle,LPSTR vname,LPBOOL value);

VB
Declare Function FBGetBooleanVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,value%)

Description
Assigns the value of the boolean variable vname to value. FBGetBooleanVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not a boolean. Otherwise this function returns EXPR_SUCCESS.

See Also
 FBGetVarAsString
 FBGetVariablePrim
 FBGetVarPtr
 FBSetBooleanVariable

FBGetConstAsString Function
See Also Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetConstAsString(name : pchar;buf : pchar;buflen : word);

C/C++
FBERROR FBAPI FBGetConstAsString(LPSTR name,LPSTR buf,WORD buflen);

VB
Declare Function FBGetConstAsString% Lib "FBCALC.DLL" (ByVal name$,ByVal
buf$,ByVal bufLen)

Description
Copies up to bufLen of the string representation of the value of the constant named name into the string
pointed to by buf.

See Also
 FBGetConstantPrim

FBGetConstantPrim Function
See Also Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetConstantPrim(name : pchar;var value : TValueRec):integer;

C/C++
FBERROR FBAPI FBGetConstantPrim(LPSTR name,LPVALUEREC value);

Description
Retrieves a copy of the value of the constant named name into value. See the Type And Constant
Reference for details on the TValueRec type. Memory allocated for this structure should be freed by
calling FBFreeValue after value is no longer needed (this is only strictly necessary if value.vtype is
vtSTRING).

See Also
 FBGetConstAsString

FBGetDateResult Function
See Also Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBGetDateResult(handle : HEXPR;var value : TFBDate):integer;

C/C+
FBERROR FBAPI FBGetDateResult(HEXPR handle,LPFBDATE value)

VB
Declare Function FBGetDateResult% LIB "FBCALC.DLL" (ByVal handle&,value#)

Description
Evaluates the expression with handle handle, and returns the date result in value. If the return type of the
expression is not vtDATE, FBGetDateResult returns EXPR_TYPE_MISMATCH. The return type of an
expression can be determined with the FBGetReturnType call.

See Also
 FBEvaluate
 FBEvaluatePrim
 FBGetReturnType

FBGetDateVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetDateVariable(handle : HEXPR;vname : pchar;var value :
TFBDate):integer;

C/C++
FBERROR FBAPI FBGetDateVariable(HEXPR handle,LPSTR vname,LPFBDATE value);

VB
Declare Function FBGetDateVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,value#)

Description
Assigns the value of the date variable vname to value. FBGetDateVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not a date. Otherwise this function returns EXPR_SUCCESS.

See Also
 FBGetVarAsString
 FBGetVariablePrim
 FBGetVarPtr
 FBSetDateVariable

FBGetEnumValue Function
Unit
FB_RTTI

Declaration
Function FBGetEnumValue(Root : TObject; Const EnumName : String; var Instance
: TObject; var EnumTypeInfo : PTypeInfo):integer;

Description
Performs a recursive search from root downward to see if EnumName exists as one of the members of a
published enumeration or set type. If root is a component, its component list is also recursively searched.
Returns the ordinal value of EnumName, or -1 if it is not found. The type information record for the
enumeration type in which EnumName occurs is returned in EnumTypeInfo.

FBGetErrorString Function
See Also DLL Reference A-Z Function Reference
Pascal
Procedure FBGetErrorString(ecode : integer;buf : pchar;buflen : word);

C/C++
void FBAPI FBGetErrorString(int ecode,LPSTR buf,WORD bufLen);

VB
Declare Sub FBGetErrorString Lib "FBCALC.DLL" (ByVal ecode%,ByVal buf$,ByVal
bufLen%)

Description
Returns, in buf, the null-terminated string description of the error ecode, up to a maximum of bufLen
characters. ecode is one of the EXPR_XXX constants.

See Also
 EXPR_XXX Constants

FBGetExpression Function
see also Expression Initialization and Disposal DLL Reference A-Z Function Reference
Pascal
Function FBGetExpression(handle: HEXPR;expr :pchar;buflen:word):integer;

C/C++
int FBAPI FBGetExpression(HEXPR handle,LPSTR expr,WORD buflen);

VB
Declare Function FBGetExpression% Lib "FBCALC.DLL" (ByVal handle&,ByVal
expr$,ByVal maxlen%)

Description
Returns the last infix expression successfully added by a FBSetExpression call. The string is copied to
expr, up to buflen characters.

see also
 FBClearExpression Function
 FBSetExpression Function

FBGetFloatResult Function
See Also Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBGetFloatResult(handle : HEXPR;var value : double):integer;

C/C++
FBERROR FBAPI FBGetFloatResult(HEXPR handle,LPDOUBLE value)

VB
Declare Function FBGetFloatResult% LIB "FBCALC.DLL" (ByVal handle&,value#)

Description
Evaluates the expression with handle handle, and returns the floating point result in value. If the return
type of the expression is not vtFLOAT, FBGetFloatResult returns EXPR_TYPE_MISMATCH. The return
type of an expression can be determined with the FBGetReturnType call.

See Also
 FBEvaluate
 FBEvaluatePrim
 FBGetReturnType

FBGetFloatVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetFloatVariable(handle : HEXPR;vname : pchar;var value :
double):integer;

C/C++
FBERROR FBAPI FBGetFloatVariable(HEXPR handle,LPSTR vname,LPDOUBLE value);

VB
Declare Function FBGetFloatVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,value#)

Description
Assigns the value of the float variable vname to value. FBGetFloatVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not a float. Otherwise this function returns EXPR_SUCCESS.

See Also
 FBGetVarAsString
 FBGetVariablePrim
 FBGetVarPtr
 FBSetFloatVariable

FBGetFunctionCount Function
See Also Function Handling Routines DLL Reference A-Z Function Reference
Pascal
Function FBGetFunctionCount : word;

C/C++
WORD FBAPI FBGetFunctionCount();

VB
Declare Function FBGetFunctionCount% Lib "FBCALC.DLL" ()

Description
Returns the number of functions (internal and programmer-defined) registered with FormulaBuilder.

See Also
 FBGetFunctionProto
 FBEnumFunctions
 FBRegisterFunction
 FBUnregisterFunction

FBGetFunctionProto Function
see also Function Handling Routines DLL Reference A-Z Function Reference
Pascal
Function FBGetFunctionProto(funcname : pchar;var vtype : byte;params :
pchar;var minprms : byte):integer;

C/C++
FBERROR FBAPI FBGetFunctionProto(LPCSTR funcname,LPBYTE vtype,LPSTR
params,LPBYTE minprms);

VB
Declare Function FBGetFunctionProto% LIB "FBCALC.DLL" (ByVal funcname$,vtype
%,ByVal params$,minprms%)

Description
Returns information on the single function named funcname, whether it is internal to FormulaBuilder or
programmer-installed.

Parameter Description
funcname the name of the function.
vtype function return type. See the vtXXX constants
parms a pointer to a null-terminated string in which each character represents

the type of parameter for that position. There string is no longer than
MAXPARAMS+1 characters long.You should copy this string to a buffer
in your program. DO NOT ATTEMPT TO MODIFY IT.

minPrms the minimum allowable number of parameters, for functions with
variable parameter lists

see also
 FBRegisterFunction
 FBUnregisterFunction

FBGetIntegerResult Function
See Also Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBGetIntegerResult(handle : HEXPR;var value : longint):integer;

C/C++
FBERROR FBAPI FBGetIntegerResult(HEXPR handle,LPLONG value)

VB
Declare Function FBGetIntegerResult% LIB "FBCALC.DLL" (ByVal handle&,value&)

Description
Evaluates the expression with handle handle, and returns the integer (longint) result in value. If the return
type of the expression is not vtINTEGER, FBGetIntegerResult returns EXPR_TYPE_MISMATCH. The
return type of an expression can be determined with the FBGetReturnType call.

See Also
 FBEvaluate
 FBEvaluatePrim
 FBGetReturnType

FBGetIntegerVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetIntegerVariable(handle : HEXPR;vname : pchar;var value :
longint):integer;

C/C++
FBERROR FBAPI FBGetIntegerVariable(HEXPR handle,LPSTR vname,LPLONG value);

VB
Declare Function FBGetIntegerVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,value&)

Description
Copies the value of the integer variable vname into the parameter value. FBGetIntegerVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not a integer. If no errors occur, this function returns EXPR_SUCCESS.

See Also
 FBGetVarAsString
 FBGetVariablePrim
 FBGetVarPtr
 FBSetIntegerVariable

FBGetReturnType Function
Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBGetReturnType(handle : HEXPR) : integer;

C/C++
int FBAPI FBGetReturnType(HEXPR handle);

VB
Declare Function FBGetReturnType% Lib "FBCALC.DLL" (ByVal handle&)

Description
Gets the return type of the expression. Valid values are the vtXXX constants.

If the expression is invalid or empty, the function returns vtTYPEMISMATCH.

FBGetStringResult Function
See Also Expression Evaluation Functionsl DLL Reference A-Z Function Reference
Pascal
Function FBGetStringResult(handle : HEXPR;value : pchar;maxlen :
word):integer;

C/C++
FBERROR FBAPI FBGetStringResult(HEXPR handle,LPSTR value,WORD maxlen);

VB
Declare Function FBGetStringResult% Lib "FBCALC.DLL" (ByVal handle&,ByVal
value$,ByVal maxlen%)

Description
Evaluates the expression with handle handle, and returns the string result in value. If the return type of
the expression is not vtSTRING, FBGetStringResult returns EXPR_TYPE_MISMATCH. The return type of
an expression can be determined with the FBGetReturnType call.

See Also
 FBEvaluate
 FBEvaluatePrim
 FBGetReturnType

FBGetStringVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetStringVariable(handle : HEXPR;vname : pchar;value : pchar;maxlen
: word):integer;

C/C++
FBERROR FBAPI FBGetStringVariable(HEXPR handle,LPSTR vname,LPSTR value,WORD
maxlen);

VB
Declare Function FBGetStringVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,ByVal value$,ByVal maxlen%)

Description
Copies up to maxlen characters of the value of the string variable vname into the parameter value.
FBGetStringVariable returns EXPR_UNKNOWN_IDENT if the variable does not exist, and
EXPR_TYPE_MISMATCH if the variable is not a string. Otherwise this function returns
EXPR_SUCCESS.

See Also
 FBGetVarAsString
 FBGetVariablePrim
 FBGetVarPtr
 FBSetStringVariable

FBGetVarAsString Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetVarAsString(handle : HEXPR;name : pchar;value : pchar;buflen :
word):integer;

C/C++
FBERROR FBAPI FBGetVarAsString(HEXPR handle,LPSTR name,LPSTR value,WORD
buflen);

VB
Declare Function FBGetVarAsString% lib "FBCALC.DLL" (ByVal handle&,ByVal
name$,ByVal value$,ByVal buflen%)

Description
Returns the string representation of the value of the variable name in value, up to buflen characters.

See Also
 FBGetBooleanVariable FBGetIntegerVariable
 FBGetDateVariable FBGetStringVariable
 FBGetFloatVariable FBSetVarFromString

FBGetVarPtr Function
See Also example Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetVarPtr(name : pchar;var vtype : byte;var value :
pointer):integer;

C/C++
FBERROR FBAPI FBGetVarPtr(LPSTR name,LPBYTE vtype,LPVOID *value);

Description
Returns a pointer to the value of a variable maintained in the expression's variable list. This may be
beneficial in instances where the expression needs to be evaluated through a large number of iterations
based on the value of the variable.

Parameter Description
name the name of the variable
vtype the variable type. It is one of the vtXXX constants
value the pointer to the variable. Note that for string variables (vtype =

vtSTRING), the value returned is the actual string pointer itself, not a
pointer to the pointer.

FBGetVarPtr Example
Pascal
var
 handle : HEXPR;
 xtype,ytype : byte;
 xptr : ^longint;
 yptr : ^double;
 total : extended;
 v : TValueRec;

begin
 handle = FBInitExpression;
 FBAddVariable(handle,'X',vtFloat);
 FBAddVariable(handle,'Y',vtFloat);
 FBSetExpression(handle,'y := rand(x)');
 FBGetVarPtr(handle,'X',xtype,longint(xptr));
 FBGetVarPtr(handle,'Y',ytype,longint(yptr));
 total := 0;
 for xptr^ := 1 to 2500 do
 begin
 FBEvaluatePrim(handle,v);
 total := total + yptr^
 end;
end;

C/C++

double *xptr,*yptr;
HEXPR handle;
unsigned char xtype,ytype;
TValueRec v;

handle = FBInitExpression;
FBAddVariable(handle,'X',vtInteger);
FBAddVariable(handle,'Y',vtFloat);
FBSetExpression(handle,'y := rand(x)');
FBGetVarPtr(handle,'X',xtype,xptr);
FBGetVarPtr(handle,'Y',ytype,yptr);
double total = 0;
for (int *xptr = 1;*xptr <= 2500; *xptr++) {
 FBEvaluatePrim(handle,v);
 total = total + *yptr;
};
/* total now contains sum of random numbers */

See Also
 FBGetBooleanVariable
 FBGetDateVariable
 FBGetFloatVariable
 FBGetIntegerVariable
 FBGetStringVariable
 FBGetVariablePrim
 FBPeekVariable

FBGetVariableCount Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetVariableCount(handle : HEXPR) : integer;

C/C++
int FBAPI FBGetVariableCount(HEXPR handle);

VB
Declare Function FBGetVariableCount% Lib "FBCALC.DLL" (ByVal handle&)

Description
Returns the number of variables successfully added with FBAddVariable for the expression referenced by
handle.

See Also
 FBAddVariable
 FBFreeVariable
 FBFreeVariableList
 FBPeekVariable
 FBPeekVarVB

FBGetVariablePrim Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBGetVariablePrim(handle : HEXPR;name : pchar;Var value :
TValueRec):integer;

C/C++
FBERROR FBAPI FBGetVariablePrim(HEXPR handle,LPSTR name,LPVALUEREC value);

Description
Returns the value of the variable name in value. value.vtype contains the variable type, with the
appropriate variant field containing its value. FBFreeValue should be called to dispose of value when it is
no longer needed.

See Also
 FBGetBooleanVariable FBGetStringVariable
 FBGetDateVariable FBPeekVariable
 FBGetFloatVariable FBSetVariablePrim

FBGetXXXResult functions

Function Description
FBGetBooleanResult Evaluate the expression, returning its boolean result.
FBGetDateResult Evaluate an expression, returning its date/time result
FBGetFloatResult Evaluate an expression, returning its floating point result
FBGetIntegerResult Evaluate an expression, returning its integer (longint)

result
FBGetStringResult Evaluate an expression, returning its string result

FBGetXXXVariable Functions
 FBGetBooleanVariable
 FBGetDateVariable
 FBGetFloatVariable
 FBGetIntegerVariable
 FBGetStringVariable

FBInitExpression Function
See Also Expression Initialization and Disposal DLL Reference A-Z Function Reference
Pascal
Function FBInitExpression(exprData : longint) : HEXPR;

C/C++
HEXPR FBAPI FBInitExpression(LONG exprData);

VB
Declare Function FBInitExpression& Lib "FBCALC.DLL" (ByVal exprData&)

Description
Allocate a handle for a new expression. Returns the expression handle, or a negative integer value if the
initialization fails. The exprData parameter (unused in VB) is a programmer definable value provided to
allow you to pass data to programmer defined functions. The value used for exprData is passed in the
exprData field of external functions. See TCBKExternalFunc for details. If you are not making use of add-
in functions, this may be set to any value, but by convention it should be set to NULL (C/C++ 0L) or 0
(zero).

See Also
 FBFreeExpression

FBLoaded Function
See Also
Unit
Fbcalc

Declaration
Procedure FBLoaded : boolean;
Description
Returns True if the FormulaBuilder DLL (FBCALC.DLL) is loaded in memory. Since the FBCalc import unit
links dynamically to the DLL, it may be necessary to see if the DLL is loaded before calls are made to its
routines.

See Also
 CheckLoadFB
 FreeFBuilder
 InitFBuilder

FBParseAddConstant Examples
Pascal
FBParseAddConstant('sqrt_pi','SQRT(pi)')
FBParseAddConstant('PastDue','DAY(Today()) > 15')

C/C++
FBParseAddConstant("sqrt_pi","SQRT(pi)")
FBParseAddConstant("PastDue","DAY(Today()) > 15")

FBParseAddConstant Function
examples Constant Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBParseAddConstant(handle : HEXPR;name : PChar;expr : PChar);

C/C++
FBERROR FBAPI FBParseAddConstant(HEXPR handle,LPSTR name,LPSTR expr);

VB
Declare Function FBParseAddConstant% Lib "FBCALC.DLL" (ByVal handle&,ByVal
name$,ByVal expr$)

Description
Create a variable with the name name, setting its initial value to the result of the expression expr. The
new constant takes the type of expr.

FBParseAddVariable Function
See Also Example Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBParseAddVariable(handle : HEXPR;name : PChar;expr : PChar);

C/C++
FBERROR FBAPI FBParseAddVariable(HEXPR handle,LPSTR name,LPSTR expr);

VB
Declare Function FBParseAddVariable% Lib "FBCALC.DLL" (ByVal handle&,ByVal
name$,ByVal expr$)

Description
Create a variable with the name name, setting its initial value to the result of the expression expr. The
new variable takes the type of expr.

FBParseAddVariable Examples
FBParseAddVariable(handle,'next_week','today() + 7')
FBParseAddVariable(handle,'fullname','Proper(lastname + char(32) +Firstname)')

See Also
 FBAddVariable

FBPasStringToDate Function
Utility Functions DLL Reference A-Z Function Reference
Pascal
Function FBPasStringToDate(const s : string):TFBDate;

Description
Converts the Pascal string s to a FormulaBuilder date type.

FBPeekVarVB Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBPeekVarVB(handle : HEXPR;vno : integer;vname : pchar;maxlen :
word;Var vtype : integer;Var value : pchar;vallen : word):integer;

C/C++
FBERROR FBAPI FBPeekVarVB(HEXPR handle,int vno,LPSTR vname,WORD maxlen,LPINT
vtype,LPSTR value,WORD vallen);

VB
Declare Function FBPeekVarVB% Lib "FBCALC.DLL" (ByVal handle&,ByVal vno%,ByVal
vname$,ByVal maxlen%,ByRef vtype%,ByVal value$,ByVal vallen%)

Description
Visual Basic version of FBPeekVariable, since VB does not support unions (variant records in Pascal). It
allows access to the name and value of variables by index. vno is the index number of the desired
variable. The name of the variable is copied to Vname , up to maxlen characters. up to vallen characters
of the string representation of variable's value is copied to value. vtype is the vtXXX constant describing
the type of the variable.

Remarks
Variables accessed through this call are indexed from at 0 to Variablecount - 1
This function returns only those variable handled internally to the engine. Variables handled in
programmer code is not visible to this function.

See Also
 FBGetVarAsString
 FBGetVariableCount
 FBPeekVariable

FBPeekVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBPeekVariable(handle : HEXPR;vno : integer;name : pchar;buflen :
word;Var value : TValueRec):integer;

C/C++
FBERROR FBAPI FBPeekVariable(HEXPR handle,int vno,LPSTR name,WORD
buflen,LPVALUEREC value);

Description
Inspect the vnoth variable in the variable list. The name of the variable is copied to name, up to buflen
characters. value is a TValueRec representing the value of the variable.

Remarks
Variables accessed through this call are indexed from at 0 to Variablecount - 1
This function returns only those variable handled internally to the engine. Variables handled in
programmer code is not visible to this function.

See Also FBGetVariableCount

See Also
 FBGetVariableCount
 FBPeekVarVB

FBRTCOMP Unit
The FBRTCOMP unit contains the declarations for TRTTIExpression, the FormulaBuilder class which
interacts directly with Delphi's Runtime Type Information (RTTI) system. The following items are declared
in the FBRTCOMP unit:

Components
TRTTIExpression

Notes
FormulaBuilder includes a unit FB_RTTI to provide a higher level interface to Delphi's RTTI. This unit
depends on routines in FB_RTTI.

FBRegisterFunction Function
See Also Function Handling Routines DLL Reference A-Z Function Reference
Pascal
Function FBRegisterFunction(fname : pchar;

returntype : byte;
params : pchar;
minparms : integer;
func : TCBKExternalFunc):integer;

C/C++
FBERROR FBAPI FBRegisterFunction(LPSTR fname,BYTE returntype,LPSTR params,int
minparms,TCBKExternalFunc func);

Description
Register a function with the FormulaBuilder engine. If the call is successful, the return value is an integer
> 100 which the engine uses as a unique ID for the function. This value should be stored for used with the
FBUnregisterFunction call. The call will return

EXPR_DUPLICATE_IDENT if the function name is not unique
EXPR_INVALID_FUNCTION if either the function name or function pointer is NULL

Parameter Description
fname the name of the function. Note that case is unimportant.
returntype the return type of the function. This must be one of the vtXXX

constants.
params a null-terminated string containing a character for each parameter

expected by the function according to the following table :

Type Character
Integer 'I'
String 'S'
Date 'D'
Float 'F'
Boolean 'B'
Any 'A'

FormulaBuilder guarantees that each parameter passed to a callback
procedure will be exactly of the type and in the order listed. It uses
automatic type conversions for assignment compatible parameters.

minprms The minparms parameter tells the parser the minimum number of
arguments the function expects. This value can be any value from 0 to
the length of the params parameter. The parser will expect no less
than minparms and no more than strlen(params) parameters. If the
number of parameters entered by the user are not in this range, the
parser will report an error.

This is our means of telling the parser that our function supports a
variable number of parameters.

func the callback function. See TCBKExternalFunc for the prototype.

See Also
 FBGetFunctionCount
 FBGetFunctionProto
 FBUnregisterFunction

FBReparseExpression Function
Expression Initialization and Disposal DLL Reference A-Z Function Reference
Pascal
Function FBReparseExpression(handle : HEXPR):integer;

C/C++
FBERROR FBAPI FBReparseExpression(HEXPR handle);

VB
Declare Function FBReparseExpression% Lib "FBCALC.DLL" (ByVal handle&)

Description
Reparses the expression previously set with a call to FBSetExpression. This function is useful in cases
where variables/fields are handled externally, and the external data source changes.

FBSetBooleanVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBSetBooleanVariable(handle : HEXPR;vname : pchar;value :
BOOL):integer;

C/C++
FBERROR FBAPI FBSetBooleanVariable(HEXPR handle,LPSTR vname,BOOL value);

VB
Declare Function FBSetBooleanVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,ByVal value%)

Description
Sets the value of a boolean variable vname with the boolean value. FBSetBooleanVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not a boolean.

See Also
 FBSetVarFromString
 FBSetVariablePrim

FBSetDateVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBSetDateVariable(handle : HEXPR;vname : pchar;value :
pchar):integer;

C/C++
FBERROR FBAPI FBSetDateVariable(HEXPR handle,LPSTR vname,LPSTR value);

VB
Declare Function FBSetDateVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,ByVal value$)

Description
Sets the value of a date variable vname with the date value. FBSetDateVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not a date.

See Also
 FBGetDateVariable
 FBGetVariablePrim
 FBSetVarFromString

FBSetExpression Function Call
See Also Expression Initialization and Disposal DLL Reference A-Z Function Reference
Pascal
Function FBSetExpression(handle : HEXPR;expr : pchar):integer;

C/C++
FBERROR FBAPI FBSetExpression(HEXPR handle,LPSTR expr);

VB
Declare Function FBSetExpression Lib "FBCALC.DLL" (ByVal handle&,ByVal expr$)

Description
Initializes the expression with its infix representation. This triggers the parsing phase of the evaluation
process.

Example
FBSetExpression(hCommission,"[sales->total] * [employee->comrate]");

see also
 FBClearExpression
 FBGetExpression

FBSetFloatVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBSetFloatVariable(handle : HEXPR;vname : pchar;value :
double):float;

C/C++
FBERROR FBAPI FBSetFloatVariable(HEXPR handle,LPSTR vname,DOUBLE value);

VB
Declare Function FBSetFloatVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,ByVal value#)

Description
Sets the value of a float variable vname with the float value. FBSetFloatVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not an float.

See Also
 FBGetFloatVariable
 FBGetVariablePrim
 FBSetVarFromString

FBSetIntegerVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBSetIntegerVariable(handle : HEXPR;vname : pchar;value :
longint):integer;

C/C++
FBERROR FBAPI FBSetIntegerVariable(HEXPR handle,LPSTR vname,LONG value);

VB
Declare Function FBSetIntegerVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,ByVal value&)

Description
Sets the value of a integer variable vname with the long integer value. FBSetIntegerVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not an integer.

See Also
 FBGetIntegerVariable
 FBGetVariablePrim
 FBSetVarFromString

FBSetStringVariable Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBSetStringVariable(handle : HEXPR;vname : pchar;value :
pchar):integer;

C/C++
FBERROR FBAPI FBSetStringVariable(HEXPR handle,LPSTR vname,LPSTR value);

VB
Declare Function FBSetStringVariable% LIB "FBCALC.DLL" (ByVal handle&,ByVal
vname$,ByVal value$)

Description
Sets the value of a string variable vname with the string value. FBSetStringVariable returns
EXPR_UNKNOWN_IDENT if the variable does not exist, and EXPR_TYPE_MISMATCH if the variable is
not a string.

See Also
 FBGetStringVariable
 FBGetVariablePrim
 FBSetVarFromString

FBSetVarFromString Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBSetVarFromString(handle : HEXPR;name : pchar;value :
pchar):integer;

C/C++
FBERROR FBAPI FBSetVarFromString(HEXPR handle,LPSTR name,LPSTR value);

VB
Declare Function FBSetVarFromString% Lib "FBCALC.DLL" (ByVal handle&,ByVal
name$,ByVal value$)

Description
Set the value of variable name from the null-terminated string value. value should be the string
representation of a constant of the same or compatible type as the variable name, otherwise a
EXPR_TYPE_MISMATCH error is returned.

See Also
 FBAddVariable
 FBGetVarAsString
 FBParseAddVariable

FBSetVariableCallbacks Function
Pascal
Function FBSetVariableCallbacks(handle : HEXPR;

CBKVFind : TCBKFindVariable;
CBKVGetval : TCBKGetVariable;
CBKVSetVal :TCBKSetVariable;
CBKData : longint) :integer;

C/C++
FBERROR FBAPI FBSetVariableCallbacks(HEXPR handle,

TCBKFindVariable CBKVFind,
TCBKGetVariable CBKVGetVal,
TCBKSetVariable CBKVSetVal,
LONG CBKData);

Description
Register functions to enable external programmer-defined variable processing. Setting callbacks
overrides the internal variable handling routines. All variables must be handled externally. An explanation
of the parameters follows in the section "External Variable/Field Handling".

FBSetVariablePrim Function
See Also Variable Handling Functions DLL Reference A-Z Function Reference
Pascal
Function FBSetVariablePrim(handle : HEXPR;name : pchar;value :
TValueRec):integer;

C/C++
FBERROR FBAPI FBGetVariablePrim(HEXPR handle,LPSTR name,TVALUEREC value);

Description
Sets the value of the variable name to value. value.vtype contains the variable type, with the appropriate
variant field containing its value. If the value.vtype field does not match the variable's type,
EXPR_TYPE_MISMATCH is returned.

See Also
 FBGetVariablePrim
 FBSetVarFromString

FBSetXXXVariable Functions
 FBSetBooleanVariable
 FBSetDateVariable
 FBSetFloatVariable
 FBSetIntegerVariable
 FBSetStringVariable

FBStringToDate Function
Utility Routines DLL Reference A-Z Function Reference
Pascal
Procedure FBStringToDate(source : TFBString;var date : TFBDate);

C/C++
void FBAPI FBStringToDate(TFBString source,LPFBDATE date);

Description
Converts the FormulaBuilder string source to a FB date .

FBStrncpy Function
Utility Routines DLL Reference A-Z Function Reference
Pascal
Procedure FBStrncpy(dest : pchar;source : TFBString;maxlen : word);

C/C++
void FBAPI FBStrncpy(LPSTR dest,TFBString source,WORD maxlen);

Description
Copy up to maxlen characters from the FormulaBuilder string source to the null-terminated string dest.

FBUnregisterFunction Function
See Also Function Handling Routines DLL Reference A-Z Function Reference
Pascal
Function FBUnregisterFunction(fnId : integer):integer;

C/C++
FBERROR FBAPI FBUnregisterFunction(int fnID);

Description
Unregisters a programmer-defined function registered with the FBRegisterFunction call. this call is
necessary when multiple clients use the FormulaBuilder DLL and at least one application calls
FBRegisterFunction with a function implemented in the application itself (as opposed to a DLL). The
explanation follows :

The internal function table is a global DLL resource. All functions registered with the DLL are visible to all
other DLL clients. If the process containing the actual callback implementation exits without Unregistering,
the function table still maintains a stale pointer to the callback. If the FormulaBuilder attempts to call this
routine, a GPF will most likely occur.

For this reason, it is best to place all programmer defined functions in a separate DLL which
registers its functions with FormulaBuilder at load-time. This way the functions remain available
independent of the applications using the FormulaBuilder DLL.

NOTE: this information pertains primarily to registered functions located in an application, as opposed to a
DLL.

see also
 FBGetFunctionProto
 FBRegisterFunction

FB_RTTI Unit
The FB_RTTI unit contains the declarations for TInstanceProperty and associated routines to ease the
task of interfacing with Delphi Runtime Type Information (RTTI) system. The following items are declared
in the FB_RTTI unit:

Objects
TInstanceProperty
RTTIError

Routines
ClassAssignmentCompatible
DescendsFrom
FBGetEnumValue
FindPropInfo
FreePropertyData
GetComponentProperties
GetProperties
GetPropFromPath
GetRTTIErrorText
StringSetToInt

The following were provided for the use of the FBRTCOMP unit as convenient ways of generating
appropriate RTTI Errors :

procedure PropValueError;
procedure PropertyNotFound;
procedure PropPathError;
Procedure InvalidPropertyError;
Procedure PropReadOnlyError;

See the entry on RTTIError for more information.

FBlpzToDate Function
See Also Utility Routines DLL Reference A-Z Function Reference
Pascal
Procedure FBlpzToDate(source : pchar;var date : TFBDate);

C/C++
void FBAPI FBlpzToDate(LPSTR source,LPFBDATE date);

Description
Convert the null-terminated string source to a FormulaBuilder Date type. Source must be valid date string.
Note that the curly braces denoting date/time constants are not needed.

See Also
 FBStringToDate

FIND Function
See Also String Functions A-Z Function Reference
Description
Returns the position of a substring within another string.

Syntax
FIND(search,source<,start>)

Remarks
the position of the string search within source. Start optionally specifies where in source to begin the
search.

See Also
 LENGTH
 MID

FIRST Function
See Also String Functions A-Z Function Reference
Description
Returns a specified number of characters from the beginning of a string.

Syntax
FIRST(count, s)

Returns the first count characters of string expression s. If count is greater than the length of s, the value
of s is returned.

See Also
 LAST
 LENGTH
 MID

FLOOR Function
See Also Math/Trig Functions A-Z Function Reference
Description
Rounds a number down to the nearest whole number.

Syntax
FLOOR(x)

x is any number

See Also
 CEILING
 INT
 ROUND

FRAC Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the fractional portion of a number.

Syntax
FRAC(x)

X is any number.

See Also
 CEILING
 FLOOR
 INT
 ROUND

FV Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the future value of an investment with a specified present value based on a series of equal
payments pmt, earning interest rate Rate over Nper payment periods

Syntax
FV(Pmt,Rate,NPer<,Type>)

Parameter Description
Pmt a numeric value representing the amount of the periodic payment.
Rate a numeric value greater than -1, representing the periodic interest rate.
Nper the number of payment periods
Type an optional number denoting the type of annuity. 0 (zero) for ordinary

annuity, 1 for an annuity due. The default is 0.

Remarks
Rate and NPer should be expressed in the same increment. For example, if you are calculating a weekly
payment, enter the Rate and NPer in weekly increments.

See Also
 FVAL PMT
 NPER PV
 PAYMT RATE

FVAL Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the future value of an investment with a specified present value based on a series of equal
payments pmt, earning interest rate Rate over Nper payment periods

Syntax
FVAL(Rate, Nper, Pmt<, Pv, Ptype>)

Parameter Description
Rate a numeric value greater than -1, representing the periodic interest rate.
NPer the number of payment periods
Pmt a numeric value representing the amount of the periodic payment.
PV the present value of the annuity
Ptype 0 if the investment is an ordinary annuity or 1 if it is an annuity due

Remarks
The Ptype and PV arguments are optional. If they are ommitted, their values are taken to be zero. Rate
and NPer should be expressed in the same increment. For example, if you are calculating a weekly
payment, enter the Rate and NPer in weekly increments.

See Also
 FV
 NPER
 PAYMT
 PMT
 PV
 RATE

FieldDataType Function
Unit
FBDBComp

Declaration
Function FieldDatatype(const f : TField):datatypes;
Description
The FieldDatatype function converts a dataset field type to its equivalent FormulaBuilder type (see the
vtXXX constants).

Fields
A field in FB terminology is simply a variable delimited by square brackets. When a field is encountered,
the text between the brackets is passed to the CBKFindVariable callback routine (DLL) or the
OnFindVariable event of the Delphi component classes. This allows the flexibility of dealing with variables
that do not fit the standard naming convention, e.g. database field names, spreadsheet cell definitions

example
[parts->partno] [$A1] [Aug95:R1C10]

The programmer has the responsibility of identifying and providing values for fields when needed by the
parser. Otherwise, fields are handled in the same manner as variables.

FilterHandle Property
Applies To
TDSFilter

Declaration
Property FilterHandle : hDbiFilter;
Description
The FilterHandle property returns the read only BDE filter handle corresponding to the TDSFilter instance.
This FilterHandle is provided should you need to use BDE level calls. See the BDE documentation for
further details.

 Financial Functions
FormulaBuilder provides the following financial functions to deal with the areas of annuities, depreciation,
capital budgeting and depreciation. The annuity functions assume by default that all investments are
ordinary annuities. An annuity is an investment in which a series of equal payments are made. An
ordinary annuity is an annuity in which a payment is made at the end of each time period. An annuity due
is an annuity in which a payment is made at the beginning of each time period.

The standard arguments for the annuity functions are as follows :

Parameter Description
 Rate interest rate, greater than -1, representing the periodic interest rate. An interest rate of 15

percent would be represented by (15/100 = .15) for example.
Nper number of payment periods. Should be an integer greater than 1.
Pv the present value of the annuity. When this argument is optional, its assumed default value is 0.
Pmt a numeric value representing the amount of periodic payment
Fv the future value of the annuity. When this argument is optional, its assumed default value is 0.
Type 0 (zero) for ordinary annuity, 1 for an annuity due. In most functions this parameter is optional and

the default is 0, meaning that payments are assumed to be at the end of the period.

Please Note ! Make sure that you are consistent about the units used in specifying Rate and NPer. For
example, for a 12% annual rate loan with monthly payments (Nper = 12 per year) and 3 years duration,
Rate would be 1% (0.01) and Nper would be 12 * 3 = 36.

Function Categories
Annuities
FV NPER PV
FVAL PAYMT PVAL
IPAYMTPMT TERM
IRATE PPAYMT

Capital Budgeting
IRR Calculates the Internal Rate of Return on an investment.
NPV Determines the Net Present Value of a series of cash flows.

Depreciation
DB Calculates the depreciation allowance for an asset using the fixed-declining

balance method.
DDB Calculates the depreciation allowance for an asset using the double-declining

balance method.
SLN Uses the Straight Line method to calculate the depreciation of an asset.
SYD Uses the Sum-of the-Years-Digits depreciation method to calculate the amount

of depreciation in one period.

Single-sum Compounding
CTERM Calculates the number of compounding periods it takes for the present value of

an investment to grow to a future value at a fixed rate of interest per period.
RATE Returns the interest rate per period of an annuity

FindPropInfo Function
Unit
FB_RTTI

Declaration
Function FindPropInfo(Root : TObject;
 Const PropName : String;
 Const Kinds : TTypeKinds;
 var Instance : TObject;
 var APropInfo : PPropInfo):boolean;
Description
Performs a recursive search from ROOT downward to see if PropName exists as one of the published
properties of an object which is a property of root, or if root is a component, contained in its component
list. Returns true if the property was found.

Parameter Description
Root The starting point of the search
PropName The name of property were interested in finding
Kinds A set of the types of properties were interested in. TTypeKinds is

defined as follows :

type
 TTypeKind = (tkUnknown, tkInteger, tkChar,
tkEnumeration, tkFloat,tkString, tkSet, tkClass,
tkMethod);
 TTypeKinds = set of TTypeKind;

Instance The actual object in which the property was found
APropInfo A pointer to the RTTI property information record for the located

property. See TYPINFO.INT for more details.

See Also
 AsString
 ReturnType

Flow of Operation
Using FormulaBuilder expressions in applications follow a simple procedure

1. Add optional constants that will be available to all expressions (constants are global)
2. Initialize the expression
3. Add the variables and constants that will be needed for the formula(s) that will be assigned to the
expression instance. Note that variables and constants to be used in expressions MUST be added
before the formula using them is assigned to the expression instance.
4. Set the expression text
5. Set the value of variables
6. Evaluate the expression
7. While variables change goto step 5
8. Free the expression instance. Variables are local to expressions and will be freed automatically.

Formula Property
See Also
Applies to
All FormulaBuilder Components

Declaration
Property Formula : String;

Description
Reads and sets the string expression to be evaluated. Setting this property will automatically invoke the
parsing process. An error will be generated if syntactical or other errors are detected in the expression.
Reading this property will return the original string expression.

Example
PiFunc.Formula := ‘22/7';
Panel1.Caption := PiFunc.AsString;{Panel1.Caption = ‘3.142.....’ }
Panel2.Caption := PiFunc.Formula; {Panel2.Caption = ‘22/7' }

Formula Property Example
 We can initialize the expression instance with the string to be evaluated with code such as the following ::

Expression1 := TExpression.Create(NIL);
Expression1.Formula := 'PAYMT(0.15,12,15000,35000,1)';
Panel1.Caption := Expression1.AsString;

See Also
 Lines Property
 StrFormula Property

FreeFBuilder Function
see also
Unit
FBCALC

Declaration
Procedure FreeFBuilder;

Description
The FreeFBuilder function decreases the FBCalc import unit's internal reference count. If the count
reaches 0 (zero), the FormulaBuilder DLL is unloaded from memory. This has no effect if the DLL is not
already loaded.

Although the FormulaBuilder Delphi components call this automatically in their destructors, this call may
still be necessary if direct DLL calls are made outside of component (for example FBRegisterFunction,
FBCreateString, and FBGetFunctionCount)

Note
As a matter of good housekeeping, please ensure that a call to InitFBuilder is matched to a call to
FreeFBuilder.

see also
 CheckLoadFB
 FBLoaded
 InitFBuilder

FreePropertyData Procedure
Unit
FB_RTTI

Declaration
Procedure FreePropertyData(AList : TStrings);
Description
Disposes of the data allocated and assigned to the Objects array property of AList in the GetProperties or
GetComponentProperties call.

FreeVariable Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure FreeVariable(Const name : string);
Description
Dispose of the variable name.Free all memory associated with the variable name and removes it from the
expression’s variable list. The Reparse method is automatically called to ensure that the expression
remains valid.

See Also
 Clear Method
 FreeVariableList Property

FreeVariableList Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure FreeVariableList;

Description
Disposes of all variables associated with the current instance.

See Also Clear

See Also
 Clear Method
 FreeVariable Method

Freeing The Expression
If you have used the non-component version of TExpression, or have added the component version
manually, code similar to the following should appear in the FormDestroy method :

 Procedure TFORM1.FormDestroy(Sender: TObject)
 Begin
 { Cleanup code }
 EXPRESSION.Free
 { Other cleanup code }
 End;

VB : Freeing the Expression
Expressions that have been initialized with a call to FBInitExpression, must be dispose of with a call to
FBFreeExpression

Example

Sub Form_Unload (Cancel As Integer)
 status% = FBFreeExpression%(handle&)
End Sub

Function Handling Routines
FormulaBuilder provides calls to register, unregister and query installed formula functions.

FBGetFunctionCount
FBEnumFunctions
FBGetFunctionProto
FBRegisterFunction
FBUnregisterFunction

FunctionCount Property
See Also
Applies to
All FormulaBuilder Components

Declaration
Property FunctionCount : word;

Description
Read Only. Returns the number of functions (both internal and programmer-defined) registered with
FormulaBuilder

See Also
 FBGetFunctionProto
 FBRegisterFunction
 FBUnregisterFunction

Functions
Functions take input values (arguments or parameters) and return a result, which may be string, numeric, date or
boolean. Function names follow the naming convention for identifiers

The format of a function is as follows

FUNCTION(argument1,argument2,...)

FUNCTION is the function name. Function names are not case-sensitive
Functions arguments are enclosed in parentheses, even for functions with no arguments.
Multiple parameters are separated by commas.
FormulaBuilder supports functions with optional arguments. Elements surrounded by angle brackets in the
function listings (< and >) are optional.

 NPER(Pmt,Rate,Fv<,Type,Pv>)

If you omit an optional argument, a default value is assumed for the argument.

Functions may be nested arbitrarily. For example :

AVG(SUM(SIN(Pi),ABS(10 * COS(X)),10, e), ASEC(X), .215, 10)

GetComponentProperties Procedure
See Also
Unit
FB_RTTI

Declaration
Procedure GetComponentProperties(AObject : TComponent;
 TypeKinds : TTypeKinds;
 AList : TStrings;
 iIndentLevel : integer);

Description
Retrieves a recursive list of all named published properties and contained components of AObject. The
list is specifically formatted for outline use, and the AList.Objects[n] item contains a TInstanceProperty
object which encapsulates the property corresponding to the AList.Strings[n] string. This procedure is
similar to GetProperties, but is specifically for components.

Parameter Description
AObject The top-level object in the heirarchy. The names of all published

properties and properties of contained objects will be loaded into AList
TypeKinds Restricts the types of properties included in AList. TypeKinds is defined

in TYPINFO.INT as follows :
type
 TTypeKind = (tkUnknown, tkInteger, tkChar,
tkEnumeration, tkFloat,tkString, tkSet, tkClass,
tkMethod);
TTypeKinds = set of TTypeKind;

AList The list containing the names of the properties. This may be assigned
to the Lines property of a TOutline to present a tree-view of the
property heirarchy rooted at AObject. The Objects[] array property
contains a TInstanceProperty object for the corresponding property
named in the Strings[] property.

iIndentLevel The beginning indent level for the property name list.

Remarks
Collecting the data for AList may involve quite a bit of recursion, and since Delphi Classes are
references, which may contain published references to other classes, this routine may cause some
delay in processing. It does yield processing periodically, but delays may still be noticeable.

Because of the levels of recursion involved and the possible amount of data collected, it is advisable
to set AObject to only simple or moderately complex objects/components

Since this routine allocates TInstanceProperty instances for each matching property it encounters,
you should ensure that FreePropertyData is called on AList (or the outline Lines property to which it
was assigned) to free the allocated memory.

See Also
 GetProperties

GetErrorString Function
Unit
FBDBComp

Declaration
Function GetErrorString(const ecode : integer):String;
Description
Returns a string describing the FormulaBuilder error code. This routine works for the data-aware
component related errors as well. Refer to the EXPR_XXX constants for additional information.

GetFunctionPrototypes Function
Unit
FBComp

Declaration
Function getFunctionPrototypes(useResultType : boolean):TStringList;

Description
The GetFunctionPrototypes function returns a stringlist containing a string prototype for each function
registered with FormulaBuilder. The format of the string is as follows :

FUNCNAME(type1,type2<,...typeN)<:returntype>

FUNCNAME the name of the function
type1..typeN characters describing the type of parameter required

Type Character
Integer 'I'
String 'S'
Date 'D'
Float 'F'
Boolean 'B'
Any 'A'

returntype a string describing the return type of the function. Whether or not this
appears depends on the value of the useResultType parameter.

GetPropFromPath Function
Unit
FB_RTTI

Declaration
Function GetPropFromPath(Root : TObject; PropPath : string;var Instance :
TObject) : PPRopInfo;

Description
Returns Property information for a property given its Path from Root. The object instance to which the
property belongs is returned in Instance.

Property Paths
If Root is set to an instance of a TForm, valid property paths would be

'Caption'
'Font.Name'

Note also that you also have (recursive) access to the properties of named components contained in the
Components array of components. For instance, given the same form which contains a TDataSource
named CustomerSource, we could use the following property path:

'CustomerSource.Dataset.Tablename'

If the Root property were set to Application, and our form were named CustomerForm, we would write the
properties as follows :

'CustomerForm.Caption'
'CustomerForm.Font.Name'
'CustomerForm.CustomerSource.Dataset.Tablename'

GetProperties Procedure
See Also
Unit
FB_RTTI

Declaration
Procedure GetProperties(AObj : TObject; TypeKinds : TTypeKinds;

 AList : TStrings;iIndentLevel : Integer);

Description
Please see the description for GetComponentProperties.

See Also
 GetComponentProperties

GetRTTIErrorText Function
Unit
FB_RTTI

Declaration
Function GetRTTIErrorText(ecode : integer):string;
Description
Returns a text string corresponding to a FB generated RTTI error. See the RTTIError topic for more
information.

GetVarPtr Examples
This code assumes we have an initialized TExpression instance named Expression1, and a TForm1 with
the method AddVariables :

Procedure TForm1.AddVariables;
begin
 with Expression1 do
 begin
 { Note that the variables were added before the expression }
 { involving them was assigned to the Formula property }
 AddVariable('Name',vtSTRING);
 AddVariable('BirthDate',vtDATE);
 AddVariable('Married',vtBOOLEAN);
 AddVariable('Children',vtInteger);
 AddVariable('Salary',vtFLOAT);
 AddVariable('PIN',vtFLOAT);
 Formula := 'PIN := Length(Name) + DAY(BirthDate) -
 (Sqrt(Age) * Salary) * IIF(Married,Kids,0)';
 end;
end; { AddVariables }

Example 1

 Procedure TForm1.GetVarPtr_SetVars;
 var Salary : ^Double;
 {name : PString; string vars should not be accessed directly }
 DOB : ^TDateTime;
 married : ^Boolean;
 kids : ^longint;
 vtype : byte;

 begin
 With expression do
 begin
 GetVarPtr('Name',vtype,pointer(namePtr));
 GetVarPtr('BirthDate',vtype,pointer(DOBptr));
 GetVarPtr('Married',vtype,pointer(MarriedPtr));
 GetVarPtr('Children',vtype,pointer(childrenPtr));
 GetVarPtr('Salary',vtype,Pointer(SalaryPtr));
 end;
 SalaryPtr^ := Person.Salary;
 ChildrenPtr^ := Person.Children;
 MarriedPtr^ := Person.Married;
 DOBPtr := Person.BirthDate;
 { Name should not be directly accessed, so well use the
 stringValue property}
 StringValues['Name'] := Person.Name;
 end;

Example 2

Beyond convenience, variable access using GetVarPtr is beneficial in expressions that need to be
calculated over many iterations. Here’s an example using a contrived expression :

Procedure TForm1.GetvarPtrLoop;
var lcv : longint;
 xptr, yptr, zptr : ^Double;

begin
 With Expression do
 begin

AddVariable(‘X’,vtFLOAT);
AddVariable(‘Y’,vtFLOAT);
AddVariable(‘Z’,vtFLOAT);
GetVarPtr(‘X’,vtype,pointer(xptr));
GetVarPtr(‘Y’,vtype,pointer(yptr));
GetVarPtr(‘Z’,vtype,pointer(zptr));

 Formula := ‘ Sin(X + Y) - Cos(X - Y) * Z‘; { or any complex formula }
for lcv := 1 to 2500 do
begin
 x^ := Sqrt(Z^) + (LCV mod 10);
 y^ := random(X^);
 z^ := AsFloat;
end;

 end;
end;

For large iterations the GetVarPtr method may save considerable processing overhead as compared to
the other variable access methods.

GetVarPtr Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure GetVarPtr(Const name : string;var vtype : byte;var value : pointer);

Description
Returns a pointer to the data for the variable name that was added with a call to the AddVariable or
ParseAddVarible method. This procedure is a wrapper around the FBGetVarPtr function call. This method
is valuable in cases where you may need to recalculate the formula for numerous values of a variable. It
avoids the overhead of a call to the StringValues, Variables, and VariableList properties for each iteration.
The vtype parameter is the vtXXX constant describing the type of the variable. Note that for variables of
type vtSTRING, the actual string pointer is returned, not a pointer to the pointer.

VERY IMPORTANT
if the variable is of type vtSTRING, it is very important not to alter the length of the string pointed to by
the value pointer.

See Also
 StringValues
 Variables
 VariableList

Getting And Setting Variable Values
To get values from our formula for various inputs, we must have access to the values of our variables. We
do so using the various variable handling methods of the TExpression class.

The Variables Property Example
The Variables Array property gives us read/write access to variables as TValueRec types

The StringValues Property Example
The StringValues array property provides read/write access to the string representation of variable values.
It is indexed by the name of the desired variable.

The VariableList Property Example
Variables can also be accessed by the VariableList Property.

The GetVarPtr Method Examples
GetVarPtr retrieves a pointer to the data for the variable name that was added with a call to the
AddVariable method. It provides the most efficient means of accessing a variable.

Getting Expression Results
Setting the text expression of a TExpression does not automatically cause the expression to be
evaluated. The following method and properties are provided to obtain the results of an expression for the
current variable set.

The EvaluatePrim Method evaluates the text expression set with the Formula, StrFormula and Lines
properties and returns the result in a TValueRec structure.

The following Properties call EvaluatePrim directly, so reading the values of these properties causes the
expression to be recalculated.

Property Returns
AsString the result of the expression as a string, regardless of its return

type
AsBoolean the boolean result of the expression
AsDate the date result of an expression
AsFloat the floating point result of the expression
AsInteger the integer (longint) result of the expression
StringResult the string result of the expression

Getting the Variable Count
The VariableCount property returns a count of all variables added to the TExpression instance. In our
example, VariableCount is equal to 5. A single TExpression or descendant instance can own up to
16,000 variables, memory permitting. Parsing may be slower for a large number of variables, but there is
no performance penalty in the actual evaluation process.

HEXPR Type
Pascal
Type HEXPR = longint;

C/C++
typedef LONG HEXPR;

Description
HEXPR is the signed 32 bit integer handle type returned by FBInitExpression and used to uniquely
identify each expression for subsequent calls to the engine.

HOUR Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the hour component of a date/time serial number.

Syntax
HOUR(datetime_serial)

datetime_serial is the date/time value from which to derive the hour. The fractional portion represents the
fraction of the day.

Remarks
The hour is returned in military (24 hour) format, from 0 (representing 12:00 am) to 23 (representing
11:00 p.m.)

See Also
 MINUTE
 SECOND

Handle Property
see also
Applies to
All FormulaBuilder Components

Declaration
Property Handle : HEXPR;
Description
Returns the handle associated with the expression. This is returned when an expression is initialized by
a call to FBInitExpression. This property is provided to allow direct calls to the FormulaBuilder DLL.

see also
 FBInitExpression

Handling Expression Errors
When you pass the text form of an expression to an instance of TExpression, the text is parsed and
translated into a tokenized intermediate representation of that expression. The expression is stored in
both its text form and in its tokenized form.There are many errors which may occur either in this phase or
when the expression is finally evaluated.

The UseExceptions Property
You can determine what happens in the event of an error by setting the UseExceptions Property. For
instance, if you would like all errors encountered in either parsing or evaluating the expression to be
returned as exceptions, set the UseExceptions Property to TRUE after constructing your TExpression
instance :

 Expression := TExpression.Create(NIL);
 Expression.UseExceptions := TRUE;

Try
 Try

Expression.Formula := '"First & "+10';
 Except

on e: EFBError do
begin

MessageDlg('FB Error #'+Inttostr(E.Errcode),
mtError,[mbOk],0);

end;
 End;
Finally
 Expression.Free;
end;

Status And StatusText
Note that the default state of the UseExceptions property is FALSE. In the FALSE state, all errors are
returned as an integer in the Status property. Refer to the entry under EXPR_XXX Constants for a list and
explanations of possible error codes.

 Expression := TExpression.Create(NIL);
 Expression.Formula := ' "First and " + 10 ';
 if Expression.Status <> EXPR_SUCCESS then
 MessageDlg(' Error code +

IntToStr(Expression.Status),mtError,[mbOk],0);

For your convenience, the StatusText Method can be used to get a text representation of the error which
occurred.

 if Expression.Status <> EXPR_SUCCESS then
 MessageDlg(Expression.StatusText,mtError,[mbOk],0);

In the event that the parser detects errors in the text expression, the text and intermediate representation
are cleared. You can verify this by testing the value of the IsNull property. You will have to enter a valid
expression before any evaluation can occur.

Handling Function Callback Errors
In case an error occurs in the callback procedure, the errcode parameter of the TCBKExternalFunc may
be used to notify the expression of its occurance. Upon entry to a function implementation callback, the
errcode parameter is set to EXPR_SUCCESS, therefore it only needs to be modified in the event of an
error. If it is set to any value other than EXPR_SUCCESS, the evaluation process halts and the value of
errcode is returned. This value may be accessed using the Status property of TExpression.

Example

NOTE - The programmer should try to trap all exceptions which may occur in the callback, and return an
error code to describe the function.

IIF Function
See Also String Functions A-Z Function Reference
Description
Returns one of two values based on a true/false condition.

Syntax
IIF(condition,value1,value2)

Condition must be a value or expression which evaluates to a boolean (TRUE/FALSE) value. if condition
evaluates to TRUE, value1 is returned otherwise return value2 is returned. Value1 and Value2 may be of
any type.

Example
IIF((BALANCE > 0) AND (TODAY() - LASTPAYMENTDATE > 30),"Delinquent","Uptodate")
IIF([SHIFT->HOURS] > 40,1.5,1.0) * [EMPLOYEE->RATE]

See Also
 CHOOSE

INSERT Function
String Functions A-Z Function Reference
Description
Insert a string into another at a specified position.

Syntax
INSERT(str,source,p)

Returns the string source with the string str inserted at position p.

INT Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the integer portion of a number.

Syntax
INT(number)

number is any number.

See Also
 CEILING
 FLOOR
 FRAC
 ROUND

IPAYMT Function
See Also Financial Functions A-Z Function Reference
Description
For a given period and a fixed interest rate, IPAYMT calculates the portion of a payment amount that is
interest.

Syntax
IPAYMT(Rate,Per,Nper,Pv<,FV,Type>)

Parameter Description
Rate the fixed periodic interest rate. Rate must be greater than -1.
Per the period for which you wish to find the interest payment. This

value must be between 1 and Nper.
NPer the total number of payment periods for the annuity.
PV a number representing the amount borrowed.
FV a numeric value representing the future value of the investment.
Type is a number specifying when payments are due. 0 (zero) indicates

an ordinary annuity, whereas 1 specifies an annuity due

Both FV and Type are assumed to be 0 if ommitted.

See Also
 PAYMT
 PMT
 PPAYMT

IRATE Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the periodic interest rate of an annuity. You can use it to determine the interest rate necessary
for an investment to grow to a future value over a specified number of periods.

Syntax
IRATE(Nper,Pmt,Pv,<FV,Type>)

Arg
um
ent

Description

NPe
r

a numeric value > 0
representing the number of
periods of the investment.

Pmt a numeric value representing
the amount of the periodic
payment.

PV the current value of the
investment.

FV the future value of the
investment

Typ
e

a numeric value equal to 0
(zero) if the annuity is an
ordinary annuity.

See Also
 RATE

IRR Function
See Also Financial Functions A-Z Function Reference
Description
Returns the internal rate of return on an investment. The internal rate of return is the percentage at which
the present value of an expected series of cash flows equals the the present value of the initial investment

Syntax
IRR(Guess,List)

Guess is your estimate of what the answer will be
List is a list of up to 15 numeric values

Generally the first number in list is negative, indicating the initial payment or investment. The amounts in
List are assumed to have been received at regular intervals, with negative amounts being considered as
outflows and positive values being considered as inflows.

See Also
 NPV
 RATE

ISEVEN Function
See Also Math/Trig Function A-Z Function Reference
Description
Returns TRUE if number is even, or FALSE if number is ODD.

Syntax
ISEVEN(number)

Number is the number to test. If Number is not an integer, it is truncated before it is tested

See Also
 ISODD

ISODD Function
See Also Math/Trig Function A-Z Function Reference
Description
Returns TRUE if number is odd, or FALSE if number is even.

Syntax
ISODD(Number)

Number is the number to test. If Number is not an integer, it is truncated before it is tested

See Also
 ISEVEN

Implementing Functions With Variable Parameter Lists
Occasionally, it is useful to have functions where the number of parameters is not fixed. Statistical
functions (SUM, AVG, etc) for example take a varying number of parameters. This feature is especially
useful for functions which have default parameter values.

Example 1
Example 2

Important Preliminary Issues For Delphi Users
Issues with Dynamic Linking
FormulaBuilder is based on a dynamically linked DLL, which is loaded and unloaded on demand. Since
loading is explicit, it is necessary to ensure that the engine is loaded before attempts are made to access
its exported functions. Components handle this process transparently, but it is the programmer's
responsibility to ensure that the DLL is loaded for calls not made in the scope of a component method.
Please refer to the topics listed in the section on the FBCALC unit.

External Functions, Callbacks and Exceptions
All FormulaBuilder callbacks (and the corresponding component events) have an error code parameter
which the programmer may use to signal an abnormal condition. While it is standard practice in Delphi to
use exceptions to handle out-of-the-ordinary conditions, you should ensure that all exceptions which may
occur within FormulaBuilder callbacks and events are trapped and returned in the error code parameter.
Components whose UseExceptions property is set to TRUE will in turn generate an appropriate exception
once the callback/event returns.
 Because objects (including exceptions) cannot be passed across the EXE-DLL boundary, the DLL will
have no knowledge of the occurence of the EXE generated exception, and this may lead to an
inconsistent expression state in the DLL.

InitFBuilder Function
see also
Unit
FBCALC

Declaration
Procedure InitFBuilder;
Description
Since the FBCalc import unit dynamically links to the FormulaBuilder DLL, it is necessary to ensure that
the DLL is loaded before we access any of its routines. The InitFBuilder function checks to see if the DLL
is already loaded. If it is, an internal reference count is incremented. If the engine is not loaded, it is
dynamically loaded and the reference count set to 1.

Although the FormulaBuilder Delphi components call this automatically, this call may still be necessary if
direct DLL calls are made outside of component (for example FBRegisterFunction, FBCreateString, and
FBGetFunctionCount)

Note
As a matter of good housekeeping, please ensure that a call to InitFBuilder is matched to a call to
FreeFBuilder.

see also
 CheckLoadFB
 FBLoaded
 FreeFBuilder

Initializing The Expression
see also
If you have added the TExpression instance to your form from the component palette, the object is
initialized automatically. If you chose to work non-visually, use the following code to initialize the
FORM1.EXPRESSION1 instance of TExpression. Any other instance of TExpression must be initialized
in a similar fashion.

 Procedure TFORM1.FormCreate(Sender: TObject)
 Begin
 {Some initialization code ...}
 EXPRESSION := TExpression.Create(Self);
 {Other Initialization code ...}
 End;

VB : Initializing The Expression
Expressions are intialized with a call to FBInitExpression. Any number of expressions (limited by memory)
may be allocated.

To use FormulaBuilder expressions
declare a variable (handle& in our examples) of type long with the scope appropriate to your project
Initialize the expression with a call to FBInitExpression

Example
Sub Form_Load ()
 handle& = FBInitExpression&(0)
End Sub

See Also
 Freeing The Expression

Installation
INSTALLATION

There are no special restrictions as to the installation of Formula Builder, except that the DLL must reside
in the Windows path.

Installing The Components
To install the FormulaBuilder components to the Delphi Component Palette :

Copy the following files to the LIB directory of your main Delphi directory.

Filename Description
FBCALC.PAS The FomulaBuilder DLL import unit for Delphi
FBCOMP.DCU The unit defining the TExpression component
FBDBCOMP.DCU The unit defining the FormulaBuilder Data-Aware components
FBRTCOMP.DCU FormulaBuilder RTTI-Aware component
FBREG.PAS Delphi Registration unit for FormulaBuilder
FBREG.DCR Delphi Palette bitmaps

Alternately, you may leave these in the FormulaBuilder directory and add this to you Library search path

Copy the file FBCALC.DLL to your \WINDOWS\SYSTEM directory or a directory on the Windows
search path.

Copy the file FBUILDER.KWF to the HELP subdirectory of your main Delphi directory.

Copy the file FBUILDER.HLP to the BIN subdirectory of your main Delphi directory.

Run the HELPINST program, located in the Delphi Program Group to integrate thel FBUILDER.KWF
keyword file into the DELPHI multihelp system.

Start DELPHI and choose 'Install Components...' from the options menu.

Press the 'Add...' Button. to open The Add Module dialog box.

Click the Browse button to open the Add Module file selection dialog box. Select the full drive and
directory path of the FBREG.PAS file as copied in step 2.

Press OK. The unit name FBREG will occur in the Installed Components list box of the Install
Components dialog box.

Press the OK button of the Install Components dialog box to install the components. The
components will appear on a Component Palette page labeled FBuilder.

Installing New Functions
One of FormulaBuilder’s greatest features is the ability to extend the engine by dynamically adding
functions which become available to the end-user at runtime. All external function are implemented via
callbacks of type TCBKExternalFunc.

We will show how to install functions by example.
Delphi Example
C/C++ Example

IMPORTANT ! If the registered function is defined in the application (as opposed to a DLL) and more
than 1 client is likely to use the DLL concurrently, the value returned from FBRegisterFunction should be
stored and used with the corresponding FBUnregisterFunction call when the function is no longer needed:
 This is necessary because the internal function table is a global DLL resource. All functions registered
with the DLL are visible to all other DLL clients. If the process containing the actual callback
implementation exits without Unregistering, the function table still maintains a stale pointer to the callback.
If the DLL attempts to call this procedure, an error will occur.

Its is therefore highly recommended that external functions be implemented in DLLs.

Delphi Users
For a more thorough discussion of this subject, see the section Using FormulaBuilder with Delphi.

Instance Property
Applies To
TInstanceProperty

Declaration
Property Instance : TObject;
Description
Read/write the object instance to which the property named Propname applies. If a published property
named Propname does not exist for Instance, an exception is raised.

See Also
 CreateFull
 CreateFromPath
 CreateFromSearch
 Instance
 Propname

See Also
 AsString Property
 EvaluatePrim Method

 International Issues
Date/Time Values
Valid date/time values are dependent on the International Settings in the Windows Control Panel.
FormulaBuilder respects the installed language drivers.

Message Strings
Certain FormulaBuilder functions (date/time functions in particular) use text which in general is human-
language dependent. In the current release, the DLL returns only English text for such strings. All text
strings used by FormulaBuilder (function names, return values and messages) reside in String Table
Resources in the DLL. Those wishing to translate FormulaBuilder resources to another language should
do so by using a resource editor. Most Windows development tools bundle a resource editor as a part of
the package.

The string tables contains the following text:
Error Message Text
Function Names. If a function name is made blank or deleted, it is not added to the engine's symbol
table, and will not be available to users.
Short strings for each month of the year (Jan, Feb, Mar through Dec)
Long strings for the months of the year (January, February, through December)
Short strings for the days of the week (Mon, Tue, Wed, through Sun)
Long string containing seven letters corresponding to the week days (Sunday through Saturday)

Changing these strings to the appropriate language will cause FormulaBuilder to return the language
specific text for the functions whose values reside in the string resources.

Please make sure that you retain a backup copy of the DLL in case of difficulties before
attempting to modify its resources.

Introduction
Welcome to FormulaBuilder, the most powerful expression evaluation engine available for any Windows
development tool capable of calling a Dynamic Link Library (DLL). FormulaBuilder (FB) has the
versatility and power to deal with the even the most complex expressions.

Expressions of arbitrary complexity
Expression text may be up to 32K in length (subject to memory constraints), with unlimited nesting of
functions and parentheses.

Mixed expression parsing.
Boolean, String, Longint, Date/Time as well as floating-point expressions are supported..

Multi-parameter functions.
Most other expression parsers restrict functions to a single floating point parameter. FormulaBuilder
functions may contain as many as 16 parameters, each being of any type supported by the engine.
Each parameter is typechecked for validity during the parsing process. An "Any" type is supported for
parameters whose types cannot be pre-determined.

Functions with variable parameters lists.
This allows the construction of expressions with functions such as, for example

 MID('Test',2,1) = 'e'
 MID('Test',3) = 'tes'

MAX(1,2,3,4,5,AVG(4,Cos(PI)),7) = 7
MAX(1,2,3) = 3
CHOOSE(3,"String",10 * Rand(10),TRUE,Today()) = TRUE

Over 100 built-in functions
Mathematical/Trig (including hyperbolic trig), Financial, String, Date/Time and Miscellaneous
functions are included.

Programmer installable functions.
Functions can be easily registered with the DLL engine. They simply need to follow a prototype and
be registered. The parser will ensure that the parameters expected by the function are of the correct
type and in the correct order. Once functions are installed in this manner, they become a part of the
FB environment and act like any other FB built in function. This allows practically any function
imaginable to be easily added to the system.

Variable and Constant support.
Variables and constants may be dynamically added or removed. By default, variables are stored in an
expression managed symbol table. For even greater flexibility callbacks may be installed to be fired
whenever the engine needs information on a variable or needs to set its value. Variables, therefore,
may be implemented in any fashion the programmer desires - from items in a list to fields in a
database table.

Efficiency.
Expressions are parsed once, tokenized and stored in an intermediate form for quicker evaluation.
There is no need to re-parse when the value of a variable in the expression changes. This is
especially beneficial where expressions need to be recalculated in loops.

Delphi Integration

The FormulaBuilder package includes five components which simplify the use and extends the
functionality of the calculation engine. They integrate tightly into Delphi's design environment, allowing
you to greatly decrease application development time.

IsBoolean Property
See Also
Applies To
TInstanceProperty

Declaration
Property IsBoolean : Boolean;
Description
Returns true is the instance property is of type boolean. This is necessary since boolean values are
treated internally by the RTTI manager as enumerated types.In fact the TTypeKind enumerated type
(which is the type of the Kind property) has no entry for boolean. This property determines whether or not
the encapsulated property was declared as a boolean in the Object Pascal source code.

See Also
 AsBoolean
 Kind
 Typename

IsDefault Property
Applies To
TInstanceProperty

Declaration
Property IsDefault : Boolean;

Description
The IsDefault property returns true if the value of the instance property is the default value for that
property.

IsNull Property
see also
Applies to
All FormulaBuilder Components

Declaration
Property IsNull : boolean;

Description
Read Only. Returns true if no infix expression test has been assigned, or if the expression set by the
Formula, StrFormula or Lines properties were the empty string "" or NIL.

see also
 Clear Method
 Formula Property
 Lines Property
 StrFormula Property

IsReadOnly Property
Applies To
TInstanceProperty

Declaration
Property IsReadOnly : Boolean;
Description
Returns true if the instance property is readonly, false otherwise.

IsStored Property
Applies To
TInstanceProperty

Declaration
Property IsStored : Boolean;
Description
Returns true if the property is a stored property.

IsValidDBExpression Function
Unit
FBDBComp

Declaration
Function IsValidDBExpression(theDB : TDatabase;expr : pchar):boolean;
Description
Determines whether the text expression expr is a valid database expression. Please refer to
TDBExpression for additional information.

Kind Property
See Also
Applies To
TInstanceProperty

Declaration
Property Kind : TTypeKind;
Description
Returns the base type of the property. TTypekind is defined in TYPINFO.INT as follows :

type
 TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,

tkString, tkSet, tkClass, tkMethod);

See Also
 Propinfo
 Typedata
 Typename

LAST Function
See Also String Functions A-Z Function Reference
Description
Returns the last count characters from a string.

Syntax
LAST(count, source)

count is the number of characters you wish to extract
source is the string from which to extract the characters

Remarks
 If count is greater than the length of source, the entire string source is returned.

See Also
 EXTRACT
 FIRST

LENGTH Function
See Also String Functions A-Z Function Reference
Description
the length of a string.

Syntax
LENGTH(St)

St is any string value or expression

See Also
 WORDCOUNT

LN Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the natural logarithm base (base e) of x

Syntax
LN(X)

X is the positive real number for which you want the natural logarithm.

Remarks
LN is the inverse of the EXP function, i.e. LN(EXP(X)) = x

See Also
 e
 EXP
 LOG

LOG Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the logarithm of a number to a given base.

Syntax
LOG(number<, base>)

number is the positive real number for which you want the logarithm.
base is the base of the logarithm, it is assumed to be 10 if ommitted, that is LOG(number) returns the
base 10 Logarithm of number.

See Also
 EXP
 LN

LOWER Function
See Also String Functions A-Z Function Reference
Description
Converts a string to all lowercase characters.

Syntax
LOWER(Source)

Source is the string you wish to convert to lowercase.

See Also
 PROPER
 UPPER

LTRIM Function
See Also String Functions A-Z Function Reference
Description
Returns the a string left trimmed of a specified character.

Syntax
LTRIM(source <, trimchar>)

Remarks
Source is left trimmed of the first character in trimchar. If trimchar is not specified, the space character is
assumed.

See Also
 RTRIM
 TRIM

License Agreement
Copyright Ordering Information
FormulaBuilder 1.0
YGB Software, Inc.
Copyright © 1995 Clayton Collie
All Rights Reserved

READ CAREFULLY BEFORE INSTALLING AND/OR DISTRIBUTING THE SOFTWARE.
You should carefully read the following terms and conditions before using this software. Unless you have
a different license agreement signed by YGB Software Inc, or the author Clayton Collie,.your use of this
software indicates your acceptance of this license agreement and warranty.

Demoware Version
Use of the Demoware version of this software is limited to a 30 day evaluation period. Use of the
Demoware software beyond the evaluation period is a license violation without payment of a license fee.
If you decide after the evaluation period that See the Order Form for additional information.

The remainder of this agreement applies to such persons who have purchased the Software or have
otherwise been granted licenses by YGB Software, Inc. or Clayton Collie.

License Agreement
This is a legal agreement between you (either an individual or an entity) and YGB Software, Inc. By
Installing and/or distributing the software you are agreeing to be bound by the terms of this agreement.

This License agreement grants you the non-exclusive and non-transferrable right to unlimited use of one
copy of the enclosed software program on a single computer. The software is in "use" on a computer
when it is loaded into temporary memory (i.e. RAM) or installed into permanent memory (e.g. hard disk, or
other storage device) of that computer.

Each license is for a single copy of FORMULABUILDER. A license is required for each developer using
FORMULABUILDER. This includes access of FormulaBuilder through a network. All workstations that will
access the software through the network for development purposes must have its own FormulaBuilder
license, regardless of whether they use FormulaBuilder at different times or concurrently. Please contact
YGB Software for information on site-licensing arrangements.

You may use all the files accompanying this product for development of an application. the included RTF
file is provided for your convenience in creating end-user documentation, and may be used and
distributed without restriction.

You have a royalty-free right to distribute only the "run-time modules " with the executable files created in
any other vendor product (Language or Development Tool) limited as set forth in paragraph a through d.
YGB Software, Inc. grants you a royalty-free distribution if :

(a) you distribute the "run time" modules only in conjunction with the executable files that make use of
them as a part of your software product;

(b) you do not use the YGB Software, Inc. name, logo or trademark to market your software product;

(c) The end users do not use the "run time" modules or any other included components for development
 purposes. and,

(d) you agree to indemnify, hold harmless, and defend YGB Software, Inc. and its suppliers from and
against any and all claims or lawsuits including attorney's fees, that arise or result from the use or

distribution of your software product.

Any violation of the conditions outlined in this agreement constitutes unlawful use of the software. The
"run time modules" are those files included in the software package that are required during execution of
your software program.

Governing Law
This agreement shall be governed by the laws of the State of New Jersey.

Exclusions or modifications of this agreement can only be made by obtaining written consent from the
author, Clayton Collie, or YGB Software, Inc.

Line Property Example
The Lines Property makes it simple and convenient for TMEMO users to set the text form of an an
expression :

Procedure Tform1.SetLinesFormula;
begin
 Expression1.Lines := Memo1.Lines;
end;

Lines Property
see also example
Applies to
All FormulaBuilder Components

Declaration
Property Lines : TStrings;
Description
Allows read/write access to the original text expression as a TStrings object. This is especially convenient
for use with TMemo components;

see also
 Formula Property
 StrFormula Property

LoadActivated Property
See Also
Applies To
TDSFilter

Declaration
Property LoadActivated : boolean;
Description
If the Active property is set to true in Design Mode, LoadActivated determines whether the filter will be
active when the form loads. If TRUE, the attached dataset will be filtered at startup. If false, the Active
property must be programmatically set for filtering to occur.

See Also
 Active Property

Logical Operators
The following operators work with numeric operands and return an integer. Floating point operands will be
truncated to integers before the operation is performed. All except the not operator are binary operators.
.

Operato
r

Description

not performs unary bitwise negation on its operand
and bitwise and
or bitwise or
xor bitwise exclusive or

Mathematical/Trigonometric Functions
FormulaBuilder contains a full complement of math, trigonometric and hyperbolic trigonometric functions.
The mathematical functions take numeric values as arguments and return a numeric result. If list is
specified in the parameter list, it indicates that a list of numeric values is expected. The trigonometric
functions expect and return angles in radians as opposed to degrees. To convert between radians and
degrees, use the functions RADIANS (degrees to radians) and DEGREES(radians to degrees). In
addition to the functions listed below, FormulaBuilder recognizes the predefined constants Pi and e
.

Function Returns
ABS (x) the absolute value of x.
ACOS(x) the arc cosine of the argument x. x is presumed to be in radians, not degrees.
ACOSH(x) the hyperbolic arccosine of x.
ACOT(x) the arccotangent of x.
ACOTH(x) the hyperbolic arccotangent of x.
ACSC(x) the hyperbolic arccosecant of x.
ACSCH(x) the inverse hyperbolic arccosecant of x
ASEC(x) the inverse secant of x.
ASECH(x) the inverse hyperbolic secant of x.
ASIN(X) the inverse sine of x
ASINH(x) the hyperbolic inverse sine of x
ATAN(x) the arc tangent of the argument x.
ATAN2(x,y) the arctangent of an angle defined by the x- and y-coordinates.
ATANH(x) the hyperbolic tangent of x
CEILING(x) x rounded up to the nearest whole number.
COS(x) the cosine of the argument x.
COSH(x) the hyperbolic cosine of x.
COT(x) the arc cotangent of the argument x.
COTH(x) the hyperbolic cotangent of x.
CSC(x) the cosecant of the argument x.
CSCH(x) the hyperbolic cosecant of x.
DEGREES(X) the value of x converted to degrees. X is presumed to be in radians.
EXP(x) the mathematical constant e, raised to the xth power.
FACT(x) the factorial of x. If x is a floating point number, it will be truncated to an integer before the

calculation occurs.
FLOOR(x) the argument x rounded down to the nearest whole number.
FRAC(x) the fraction part of the float expression x.
INT(f) the integer portion of the float expression f.
ISEVEN(n) TRUE is the numeric argument n argument is even, false if not
ISODD(x) TRUE if the argument is odd, false otherwise
LN(x) the natural logarithm of x.
LOG(x<,n>) the base n logarithm of the number x. If n is not specified, the base 10 logarithm is returned.
MAX(list) the largest number in the list of numbers list.
MIN(list) the smallest number in the list of numbers list.
PRODUCT(list) the product of the list of floating point values
RADIANS(x) x converted from degrees to radians.
RAND(<n1,n2>
)

returns a pseudo-random floating point number.

ROUND() The Round function rounds a Real-type value to an Integer-type value.
SEC(x) the secant of x.
SECH(x) the hyperbolic secant of x.
SIN(x) the sine of the argument x.
SINH(x) the hyperbolic sine of x.
SGN(x) the sign of the number x
SQR(f) the square of f, i.e. f*f
SQRT(f) the square root of f

SUM(list) the sum of the list of floating point values, list.
TAN(x) Returns the tangent of the argument x.
TANH(x) Returns the hyperbolic tangent of x.

MAX Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the maximum value of a list of numbers.

Syntax
MAX(number1, number2,...)

number1, number2,... are 1 to MAXPARAMS values for which you want the maximum value.

See Also
 AVG
 MIN
 PRODUCT
 SUM

MAXPARAMS Constant
FormulaBuilder 1.0 supports a maximum of 16 parameters

MAXSTR Function
See Also String Functions A-Z Function Reference
Description
Finds the largest string in a list. That is, it returns the value which would appear first if the list were sorted
in descending order.

Syntax
MAXSTR(string1, string2, <,...>)

String1, String2 ... are the values from which the largest string is determined. Up to MAXPARAMS
parameters are allowed.

See Also
 MINSTR

MID Function
See Also String Functions A-Z Function Reference
Description
Returns a specified number of characters from a string, starting at specified position in the string. If the
length parameter is not included, the function returns the first start characters of source.

Syntax
MID(source, start <,len >)

source is the string from which to return characters.
start is the position of the first character to return from text.

If start is 1, the first character in text is returned.
If start is greater than the number of characters in text, an empty string ("") is returned.
If start is less than 1, a null string is returned.
len is the number of characters to return.

Remarks
If start + len exceeds the length of text, the characters from start to the end of source are returned.

See Also
 EXTRACT
 LENGTH

MIN Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the smallest number in a list of numbers.

Syntax
MIN(number1, number2,...)

number1, number2,... are 1 to MAXPARAMS values for which you want the minimum value.

See Also
 AVG
 MAX
 PRODUCT
 SUM

MINSTR Function
See Also String Functions A-Z Function Reference
Description
Finds the smallest string in a list. That is, it returns the value which would appear first if the list were
sorted in ascending order.

Syntax
MINSTR(string1, string2, <,...>)

String1, String2 ... are the values from which the smallest string is determined. Up to MAXPARAMS
parameters are allowed.

See Also
 MAXSTR

MINUTE Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the integer value in the range 0 to 59 corresponding to the minute portion of a date/time
serial number.

Syntax
MINUTE(datetime_serial)

datetime_serial is the date/time value from which to derive the minute.

See Also
 HOUR
 SECOND

MONTH Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns an integer (1 - 12) representing the month component of a date serial number.

Syntax
Month(date_serial)

date_serial is the date value.

See Also
 DAY
 YEAR

MONTHNAME Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the month name of the month of a date value

Syntax
MONTHNAME(date1)

date1 is the date serial number for which you want to find the month name

See Also
 MONTH

Miscellaneous Functions
CHOOSE IIF

NOW Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns today's date and time as a date/time serial number value

Syntax
NOW()

Remarks
The date value is stored in the integer portion of the value. The fractional portion represents the fraction of
the day.

See Also
 TIME
 TIMENOW
 TODAY

NPER Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the number of periods required for an annuity with regular fixed payments and an optional
present value to accumulate a future value at a specific interest rate. This is an extended version of the
CTERM and TERM functions.

Syntax
NPER(Rate,Pmt,Pv<,FV,Type>)

All parameters to this function are numeric values

Argument Description
Rate the amount of the periodic payment, greater than -1
Pmt the fixed interest rate per payment period. This can any value except 0.
Pv the present value of the investment
Fv the expected future value of the investment
Type 1 for an ordinary annuity, 0 for an annuity due

Remarks
The options parameters, Type and Pv are both assumed to be 0 (zero) if ommitted.

See Also
 CTERM PV
 FV RATE
 PMT TERM
 PPAYMT

NPV Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the net-present value of a series of a series of cash flows, discounted at a fixed periodic rate

SYNTAX
NPV(Rate,Value1,Value2,...)

Rate is the rate of discount over the length of a period.
Value1, Value2,.. represent the numeric values of the cash outflows

NPV assumes that the cash outflows occur at equal time intervals, and that the investment is an ordinary
annuity.

See Also
 IRR
 PV
 PVAL

Numeric Constants
FormulaBuilder accepts all legal numeric values within its range of precision. Numbers in scientific
notation are also accepted. Numbers without decimals are stored internally as integers (vtINTEGER).
Fractional values may begin with a period e.g. .25

OnFindVariable Event
See Also
Applies to
TExpression

Declaration
Property OnFindVariable : TFindVariableEvent;
Description
The OnFindVariable event for an expression occurs when the expression parser encounters an unknown
identifier which may be a variable.or field. In this event the programmer identifies whether or not the
identifier is a variable, gives its type, and optional information to speed subsequent lookups. By handling
this event, you gain the ability to handle variables external to the core FormulaBuilder engine.

Note - this event must be used in conjunction with the OnGetVariable event (and optionally the
OnSetVariable event if assignment statements are to be used). Both must be defined for the engine to
properly handle externally defined variables. If these events are defined, the Variables and VariableList
properties will not have access to variables handled in this manner.

see also
 OnGetVariable event
 OnSetVariable event
 UseEvents Property

OnGetVariable Event
See Also
Applies To
TExpression

Declaration
Property OnGetVariable : TGetVariableEvent;
Description
The OnGetVariable occurs when the expression engine needs the value of a variable used in an
expression. This event is used in conjunction with the OnFindVariable event (and optionally the
OnSetVariable event) to implement programmer-defined variable handling.

See Also
 OnFindVariable event
 OnSetVariable event
 UseEvents property

OnSetVariable Event
See Also
Applies To
TExpression

Declaration
Property OnSetVariable : TSetVariableEvent;

Description
The OnSetVariable occurs when an expression containing an variable assignment is made and the value
of the variable therefore needs updating. This event is not meaningful apart from the OnFindVariable and
OnGetVariable events. These events must all be handled to implement programmer-defined variable
processing.

See Also
 OnFindVariable event
 OnGetVariable event
 UseEvents property

Operands
Operands are the data the expression manipulates and combines with operators to derive a value.

Operator Precedence
The result of an expression depends on the order in which operations are performed. Each operator is
assigned a precedence, and operations are performed in order of precedence. This eliminates possible
ambiguities in expressions. An operation can be given higher precedence by surrounding it with
parentheses.

Below is the operator precedence list from highest to lowest priority:

Operators Precedence Category
(,) First Prioritization
 not, - , + Second Unary
^,**, *, /, mod, div Third Multiplicative
 +, - , and , &, or, |, xor Fourth Additive
 =, <>, <, <=, > , >=,like Fifth Relational
 := Sixth Assignment

Rules of Precedence

1. An operand between two operators of different precedence is bound to the operator with higher
precedence.
2. An operand between two equal operators is bound to the one on its left.
3. Expressions within parentheses are evaluated before being treated as a single operand.

Operators
Operators specify actions to occurs on operands

Order Form
FormulaBuilder 1.0
FormulaBuilder can be registered electronically on Compuserve via the Software Registration
(SWREG) system. The registration number is 10343. When on Compuserve, GO SWREG.

Checks must be drawn on a US bank, and both checks and money orders should be made payable to
YGB Software, Inc.

Send check or money order to
YGB Software, Inc.
161 Pearl St.
Paterson, NJ 07501
USA

Prices guaranteed through March 31, 1995.

FormulaBuilder 1.0 Single Copy _____ copies at $ 65 each = _______

Georgia residents add 5% sales tax + _______

 Total Payment _______

Please make sure to include the following information:

Name :__

Company :__

Address :__

City :________________________ State :______ Zip Code :____________

Country (if not U.S.) :__

E-mail Address :___________________________________

Optional Information

Where did you get this package from?

[] CompuServe
[] America Online
[] another Online Service
 Name ______________________
[] the Internet
 Site ________________________
[] Shareware Catalog Vendor: Vendor Name::
[] A friend
[] None of the above
[] other

Comments and Suggestions for improvements:

__
__

__
__

__
__

If you have any question concerning your order please contact us on CompuServe at 103515,1757 (or
via the Internet at 103515.1757@compuserve.com) attention YGB.

PADCENTER Function
See Also String Functions A-Z Function Reference
Description
Centers a string in a specified width, filling it out on both sides by a specified character

Syntax
PADCENTER(source,len,padch)

Source is the string to be padded.
len is the length of the resulting string
padch is a string. The first character in padch will be the padding character

See Also
 PADLEFT
 PADRIGHT

PADLEFT Function
See Also String Functions A-Z Function Reference
Description
Returns a string of length len (maximum 255 chars), such that s is leftmost in the string and is filled on the
right with pad.

Syntax
PADLEFT(s , len, pad)

Source is the string to be padded.
len is the length of the resulting string
padch is a string. The first character in padch will be the padding character

Example
PADLEFT('$'+str(2500.55),15,'*') = ‘$2500.55*******'

See Also
 PADCENTER
 PADRIGHT

PADRIGHT Function
See Also String Functions A-Z Function Reference
Description
Returns a string flushed right within a specified length. The string is filled on the left with a specified
character.

Syntax
PADRIGHT(source,length,pad)

source is the string to be padded
length is the desired length of the resulting string
pad is the padding character to use

See Also
 PADCENTER
 PADLEFT

PAYMT Function
See Also Financial Functions A-Z Function Reference
Description
Returns the payment on a loan at the interest rate rate for a specified number of payment periods.

Syntax
PAYMT(Rate,Nper,Pv,<,Fv,Type>)

Argument Description
Rate the fixed rate of periodic interest
Nper the total number of payment periods for the loan. This is a number > 0
Pv a number representing the principal of the loan (the amount borrowed)
Fv a number representing the value the investment is expected to reach

at a future date. Use a positive value for FV to determine the size
payment that would have to be made to accumulate FV after Nper
periods.

Type a number indicating whether payments are made at the end (0) or the
beginning of the payment period (1).

See Also
 IPAYMT
 PMT
 PPAYMT

Pi = 3.14159265358979...

PMT Function
See Also Financial Functions A-Z Function Reference
Description
Returns the payment required on a loan at a given interest rate, for a specified number of payment
periods.

Syntax
PMT(Pv,Rate,Nper<,Type>)

Parameter Description
Pv the principal
Rate the decimal value representing the interest rate on the loan.

This value must be greater than -l
Nper the number of payment periods.
Type Payment type. 0 for an ordinary annuity, 1 for an annuity due.

Type is 0 by default.

Remarks
Rate and Nper must be expressed in the same increments. For instance if payments are made monthly,
then Rate must be the monthly interest rate for the loan.

See Also
 NPER
 PAYMT
 PPAYMT
 PV
 RATE

PPAYMT Function
See Also Financial Functions A-Z Function Reference
Description
Calculates the portion of a loan that is the principal (as opposed to interest).

Syntax
PPAYMT(Rate,Per,Nper,Pv,<Fv,Type>)

Argument Description
Rate the fixed rate of periodic interest, > -1
Per a numeric value, the number of periods into the loan for which the

principal is desired.
Nper the total number of payment periods for the loan. This is a number

> 0
Pv a number representing the principal of the loan (the amount

borrowed)
Fv a number representing the value the investment is expected to

reach at a future date. Use a positive value for FV to determine the
size payment that would have to be made to accumulate FV after
Nper periods.

Type a number indicating whether payments are made at the end (0) or
the beginning of the payment period (1).

See Also
 IPAYMT
 PAYMT
 PMT

PRODUCT Function
See Also Math/Trig Functions A-Z Function Reference
Description
Multiplies all the numbers in a list of numeric values.

Syntax
PRODUCT(number1, number2,....)

number1, number2,... are 1 to MAXPARAMS values for which you want the product.

See Also
 AVG
 MAX
 MIN
 SUM

PROPER Function
See Also String Functions A-Z Function Reference
Description
Converts the first letter of every word in s to uppercase. A word is defined as an unbroken string of
alphabetic characters. Non-alphabetic characters are unaffected.

Syntax
PROPER(sourcestring)

sourcestring is a string value

Example
Proper('JAMES morriS wiLLiams') returns 'James Morris Williams'

See Also
 LOWER
 UPPER

PV Function
See Also Financial Functions A-Z Function Reference
Description
Returns the present value of a series of equal payments.

Syntax
PV(Pmt,Rate,Nper,Type)

Parameter Description
Pmt the amount of the periodic payment
Rate the interest rate
Nper he number of periods over which payments are made. This

value must be > 0
Type a number representing the type of payment. 0 for an ordinary

annuity, 1 for annuity due.

See Also
 FV PMT
 FVAL PVAL
 NPV RATE

PVAL Function
See Also Financial Functions A-Z Function Reference
Description
Determines the present value of an investment, with a specific future value, based on a series of equal
payments, discounted at a periodic interest rate over a number of equal periods.

Syntax
PVAL(Rate,Nper,Pmt<,Fv,Type>)

Parameter Description
Rate a value > -1 representing the periodic interest rate
Nper a positive integer representing the number of payment periods
Pmt a numeric value representing the amount of the periodic

payment
FV the future value of the investment
Type 0 if payments are made at the end of each period, 1 if they are

at the beginning.

See Also
 FV
 FVAL
 NPV
 PMT
 PV
 RATE

ParseAddConstant Method
See Also
Applies To
All FormulaBuilder Components

Declaration
Procedure ParseAddConstant(const cname : string;expr : string);

Description
Create a constant with the name name, setting its value to the result of the expression expr. The new
constant takes the type of expr. If the identifier name exists, an EXPR_DUPLICATE_IDENT error is
returned.

See Also
 AddBooleanConstant
 AddConstantPrim
 AddDateConstant
 AddNumericConstant
 AddStringConstant

ParseAddVariable Method
See Also
Applies to
All FormulaBuilder Components

Declaration
Procedure ParseAddVariable(const vname : string;expr : string);

Description
Create a variable with the name name, setting its initial value to the result of the expression expr. The
new variable takes the type of expr.

See Also
 AddVariable

Parsing Phase
In the Parsing Phase, the string formula is decomposed into its constituent parts - constants, variables,
fields, operators and functions. These tokens are assembled into a more efficient but functionally
equivalent internal representation of the original expression.

Pascal External Function Example
Suppose we wanted runtime access to a function "myfunc()" . For the sake of our discussion, our function
"myfunc()" will include parameters of each type supported by the FormulaBuilder engine. The declaration
of our function, in Pascal would be as follows :

Function myfunc(l : longint;b : BOOLEAN;d : double;s : string;dt :
TFBDate) :string;

We could use this in a FormulaBuilder expression as follows :

const
 MYEXPR : string = '"myfunc() returns " + myfunc(12345, true, 10.0245,'+

 '"myfunc string",today())' + #0;

var
 myHandle : HEXPR;
 answer : string;
 buf : array[0..120] of char;
 ptr : pchar;
 expr : pString;

begin
 myHandle := FBInitExpression(100); {}

FBSetExpression(myHandle,@MYEXPR[1]);
ptr := @buf;
FBEvaluate(myHandle,ptr,sizeof(buf)-1);
answer := strpas(ptr);

end;

Implementing The Callback
In order to make myfunc() available, we have to create an exportable callback function with the prototype
TCBKExternalFunc. Note that the export directive is absolutely necessary. Our implementation of the
function follows:

Procedure myfunc(bParamcount : byte;
const params : TActParamList;
var retvalue : TVALUEREC;
var errcode : integer;
exprdata : longint); export;

var
 result : string[120];
 datestr : string[20];
 intval : longint;
 boolval : boolean;
 floatval : double;
 strval : string[80];
 dateval : TFBDate;

begin
 intval := params[0].vInteger;
 boolval := params[1].vBoolean;
 floatval:= params[2].vFloat;
 dateval := params[4].vDate;
 strval := params[3].vpString^;
 dateval := dateTostr(dateval);
 result := format(' int : %ld bool : %d float : %f str : %s date : %s ',

[intval,boolval,floatval,strval,datestr]);

 retvalue.vpString = FBCreateString(result);

 { ExprData is 100 , the same as in call to FBInitExpression }

 errcode := EXPR_SUCCESS; /* not really necessary, since this is its value on entry
*/
end;

Note that the value of the ExprData parameter is same as the programmer defined value passed as the
parameter in the FBInitExpression call.

Registering The Function
Now that our callback function is written, we need simply to register the function with the FormulaBuilder
parser. We do so by means of the FBRegisterFunction call.

var myFnId : integer;
begin
 myFnId := FBRegisterFunction(’myfunc’,vtSTRING,'ibfsd',5,myfunc);
end

The first parameter tells FormulaBuilder the name of your function, the second its type (see the vtXXX
constants). The third parameter describes the parameters expected for the function (integer, boolean,
float, string and date respectively). FormulaBuilder guarantees that the elements of the params parameter
passed to myfunc will be exactly of the type and in the order listed. The next parameter instructs the
parser to expect a minimum of 5 parameters. This value could have been any value from 0 to the length
of the previous parameter. The nParamcount parameter of the callback routine, upon entry, contains the
number of parameters the user entered. The final parameter, of course, is a pointer to the function which
implements "myfunc".

FBRegisterFunction returns EXPR_INVALID_FUNCTION if the call is unsuccessful, otherwise it returns a
positive integer > 100 which uniquely identifies your function. You may use the return value from the
registration call to unregister the function.

Thats It ! Youve successfully added a function to FormulaBuilder. "myfunc" will be treated like any of
FormulaBuilder’s other functions. As you can see, practically any function can be added, including
wrapper functions for the Windows API.

Passing Data to External Functions
Callbacks and the ExprData (Expression Data) parameter
Every function implementation callback (type TCBKExternalFunc) has a longint argument ExprData as its
last parameter. ExprData provides a means of passing data from the expression instance to the callback.
If you were observant, you would notice that FBInitExpression also has an ExprData parameter The
value specified here is the same value passed to the callbacks in your code.

Uses Of This Technique
Windows uses this technique (application defined data passing) extensively in the API. In fact every
Windows message carries two parameters wParam and lParam which carry additional information related
to the message. Certain Windows API functions require callbacks which have an additional parameter for
programmer defined data.

Example
To demonstrate the usefulness of this technique, we present a code snippet using the Windows
Enumwindows function to get a list of all top level windows and the associated handles.

ExprData and The Delphi Wrapper Components
The ExprData parameter allows us to pass 32 bits of information to our function implementation routines.
If you examine the constructor for TExpression in FBCOMP.PAS, you will notice the following statement :

 fhandle := FBInitExpression(longint(self));

Delphi classes are reference based and allocated on the heap. Therefore this statement actually sets the
expression data to a pointer to the just created TExpression or descendant. Using this knowledge, we can
now access the instance which called our callback procedure from within the callback itself.

Example 1
Example 2

Priority Property
Applies To
TDSFilter

Declaration
Property Priority : integer;
Description
The Priority property determines the order of execution of multiple filters attached to the same
Datasource. (1=default means first filter to work on, the filter with 2 would be 2nd and so on).

PropInfo Property
Applies To
TInstanceProperty

Declaration
Property PropInfo : PPropInfo;

Description
Returns a pointer to the RTTI PropInfo record which provides information on the instance property. See
TYPINFO.INT for the declaration.

Propname Property
example
Applies To
TInstanceProperty

Declaration
Property Propname : string;
Description
Returns the property name of the instance property. Setting a value for Propname will change the
property which the instance of TInstanceProperty encapsulates. If a published property with the new
name does not exist for the current value of the Instance property, and Instance is not NIL, an exception
is raised.

Propname Property example
Procedure TForm1.PropnameExample;
var
 TestProp : TInstanceProperty;

begin
 TestProp := TInstanceProperty.CreateFromPath(Font,'Caption');
 Try
 Panel1.Caption := TestProp.Typename; {caption will show 'Caption'}
 Finally
 TestProp.Free;
 End;
end;

RADIANS Function
See Also Math/Trig Functions A-Z Function Reference
Description
Converts an angle in degrees to its equivalent in radians.

Syntax
RADIANS(x)

Remarks
x is any number floating point or integer value. The resulting value is PI/180 * X

See Also
 DEGREES
 Pi

RAND Function
Math/Trig Functions A-Z Function Reference
Description
Returns a pseudo-random number.

Syntax
RAND(<num1,num2>)

Num1 and num2 are both numbers

Remarks
without parameters, RAND() returns a random floating point number between 0 and 1.
RAND(num1) returns a random number between 0 and num1.
RAND(num1,num2) returns a floating point number between num1 and num2.

RATE Function
See Also Financial Functions A-Z Function Reference
Description
Returns the interest rate per period of an annuity, given a series of constant cash payments made over a
regular payment period.

Syntax
RATE(Fv,Pv,Nper)

Parameter Description
Pv the present value of the annuity
FV the future value - the value you wish for the

investment to reach after the last payment
NPer the total number of payment periods in the annuity.

Remarks
Rate produces a value in the same increment as NPer. If Nper represents years, an annual rate results; If
NPer represents months, a monthly interest results, and so on.

See Also
 FV PMT
 IPAYMT PPAYMT
 IRATE PV

REPLACE Function
See Also String Functions A-Z Function Reference
Description
Replace all occurrences of a string with another.

Syntax
REPLACE(source, search , replacement)

Source is the original string
Search is the string to replace
Replacement is what Search is to be replaced with if found in Source

Example
Replace('Please send the IRS your taxes','the IRS','me') = ‘Please send me your taxes’

See Also
 TRIM

REPLICATE Function
String Functions A-Z Function Reference
Description
Repeats text a given number of times

Syntax
REPLICATE(Source,Count)

Remarks
Replicate returns a string containing count copies of Source, to a maximum length of 255 characters

ROUND Function
See Also Math/Trig Functions A-Z Function Reference
Description
The Round function rounds a float type value to an the nearest integer, or to an optional number of
decimal places.

Syntax
ROUND(X[,Places])

X is any number
Places is an optional integer specifying the number of decimal places

Remarks
X is a floating point type value or expression. Round(X) returns an float value that is the value of X
rounded to the nearest whole number. If X is exactly halfway between two whole numbers, the result is
the number with the greatest absolute magnitude.

If the Places parameter is specified, X is rounded to Places decimal places..

See Also
 CEILING
 FLOOR
 INT

RTRIM Function
See Also String Functions A-Z Function Reference
Description
Removes all instances of a specific character from the right side of a string.

Syntax
RTRIM(source <, trimchar>)

Source is the original string
the first character of trimchar will be removed from the right of source. If this parameter is ommitted,
source will be right trimmed of all spaces.

Example
RTRIM(‘200,000',’0') returns ‘2'
Rtrim(‘2000 ‘) returns ‘2000'

See Also
 LTRIM
 TRIM

RTTIError Object
Unit
FB_RTTI

Declaration
Type
 RTTIError = Class(Exception)
 public
 Constructor Create(ecode : integer);
 Property ErrorCode : integer read fErrorCode write fErrorCode;
 end;
Description
RTTIError is the error type generated by FormulaBuilder when RTTI related errors are encountered. Upon
being raised the ErrorCode property contains one of the following error codes :

Error Code Description
RTTI_INVALID_OBJECT 210 An attempt was made to access the property of a nil

object instance.
RTTI_INVALID_PROPERTY 211 Invalid property. Most likely an invalid property name

was passed to a routine, or an unknown property type
was encountered.

RTTI_INVALID_PROPVALU
E

212 An invalid value was assigned to a property.

RTTI_INVALID_PROPPATH 213 An invalid property name or path was specified.
RTTI_PROP_READONLY 214 An attempt was made to assign a value to a readonly

property.

See Also
 TExpression

Refresh Method
See Also
Applies To
TDSFilter

Declaration
Procedure Refresh;
Description
Refreshes the Datasource (and consequently the Dataset) assigned to the TDSFilter instance.

See Also
 AutoRefresh

Register Procedure (FBDBComp)
Unit
FBDBComp

Declaration
Procedure Register;
Description
Registers the Data-Aware components TDBExpression, TDSExpression and TDSFilter with the Delphi
Form Designer. See the section entitled Installing FormulaBuilder Components To the Component Palette

Register Procedure
Unit
FBComp

Declaration
Procedure Register;
Description
Registers the TExpression component with the Delphi Form Designer. See the section entitled Installing
FormulaBuilder Components To the Component Palette

 Registration
Copyright Order Form License Disclaimer
FormulaBuilder (FB) ™ is not free software. It is released as Demoware. The Demoware version will
display a short reminder screen for each task that uses the DLL, but otherwise has all the features and
capabilities of the registered version. Use of the Demoware version of FormulaBuilder beyond a 30 day
evaluation period requires registration. To register, fill out the attached order form and mail it along with a
check or money order for $79 US ($65 before April 1, 1996) to the address below. Checks must be for US
funds, drawn on a US bank, and both checks and money orders should be made payable to YGB
Software, Inc.

Mail Should be sent to
YGB Software, Inc.
161 Pearl St.
Paterson, NJ 07501
USA

FormulaBuilder may also be registered on CompuServe via SWREG (number #10343). Registration
includes 6 months free technical support and automatic eligibility for discounts and special upgrade prices
on future products, including the 32-bit edition of FormulaBuilder.

Once your registration is received, you will be sent the current released version of FormulaBuilder,
(including source to the non-DLL portions of the package, compiled components, examples and user-level
documentation) via E-mail.

Relational Operators
Relational operators are used to compare two or more values. The values being compared are of the
same type.

Relational Operators
FormulaBuilder supports the standard relational operators:

Operators Description
= Equal
< Less Than
> Greater Than
<> Not Equal To
>= Greater Than Or Equal To
<= Less Than Or Equal to
LIKE Wildcard string match (both operands must be strings)

Removing Variables
Individual variables may be freed using the FreeVariable method. If you wish to remove all variables from
a TExpression's variable list, use FreeVariableList.

Note. You should call Reparse after variables have been removed to ensure that the expression remains
valid. If a variable is removed that is referenced in an expression, a GPF will occur when you attempt to
evaluate that expression.

Reparse Method
Applies to
All FormulaBuilder Components

Declaration
Procedure Reparse;
Description
Reparses the infix string assigned to the expression instance via the Formula, StrFormula, or Lines
properties. This is necessary for subclasses of TExpression (TDSExpression, for example) which derive
their variable data from external sources. If the external source changes (if the Dataset property of
TDSExpression changes, for example), the expression needs to be reparsed to reset internal variables
and to verify if the infix expression is still correct for the new data source.

ReturnType Property
Applies to
All FormulaBuilder Components

Declaration
Property ReturnType : byte;
Description
Read-only. Returns the vtXXX constant describing the type of the expression, whether or not it has been
evaluated. Returns vtTYPEMISMATCH if there is an error in the original expression.

Root Property
Applies to
TRTTIExpression

Declaration
Property Root : TObject;

Description
Reads and sets the top level object whose properties the expression will have access to. All properties of
Root, and recursively the properties of all its named components (if Root is a component type) are
available to the expression.

Variable/Property names take the form of "dot notated" identifiers giving the full path to the property. Root
serves as the enclosing scope. For example, if Root is a TForm, valid variables are

[Caption]
[Font.Name]

If on the other hand, Root is the Application instance, and our form is named InvoiceForm (the Name
property of the TForm was set at form activation) we would use the following :

[InvoiceForm.Caption]
[InvoiceForm.Font.Name]

Setting the values of variables in an assignment has the expected effect at runtime. For instance, the
following moves the form Form1 down 5 units,

Procedure TForm1.MoveItDown;
Var expr : TRTTIExpression;
begin
 expr := TRTTIExpression.Create(NIL);
 TRY

 expr.Root := Self;
 expr.Formula := '[Top] := [Top] + 5';
 expr.AsString; { Force evaluation }
 FINALLY
 expr.free;
 END;
end;

NOTE
In order for the expression to access a particular property, all nodes in the path to the property must be
named. The default value of Root is the Forms.Application variable.

SEC Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the secant of the given angle.

Syntax
SEC(number)

number is the angle, in radians, for which you want the secant. Use the RADIANS function to convert
degrees to radians.

Remarks
The secant function is defined as SEC(X) = 1 / COS(x)

See Also
 CSC
 COS
 SECH

SECH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the hyperbolic secant of an angle.

Syntax
SECH(x)

X is the angle in radians.

Remarks
If you wish to convert a value expressed in degrees to radians, use the RADIANS function.

See Also
 ASEC
 EXP
 SEC

SECOND Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the integer value in the range 0 to 59 corresponding to the second portion of a date/time
serial number.

Syntax
SECOND(Serial_Number)

Serial_Number is the time value from which to derive the second.

See Also
 HOUR
 MINUTE

SGN Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the sign of a number as an integer value.

Syntax
SGN(number)

number is any float or integer value.

Remarks
SGN returns a value as follows
if number < 0, return -1
if number > 0, return 1
otherwise return 0

See Also
 ABS

SIN Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the sine of its argument.

Syntax
SIN(x)

Remarks
x is the angle in radians for which you want the sine. If the argument is in degrees, convert it to radians
with the Radians function.

See Also
 ASIN
 PI

SINH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the hyperbolic sine of a number.

Syntax
SINH(number)

number is any number

See Also
 ASINH
 COSH
 TANH

SLN Function
See Also Financial Functions A-Z Function Reference
Description
Uses the Straight Line depreciation method to calculate the amount of depreciation in one period.

Syntax
SLN(Cost,Salvage,Life)

Cost is the original cost of the asset
Salvage is the expected selling price of the asset at the end of its life.
Life is the number of periods (usually in years) the asset is expected to be in use.

See Also
 DB
 DDB
 SYD

SOUNDALIKE Function
See Also
Description
Determines whether two words sound alike, based on the Soundex algorithm.

Syntax
SOUNDALIKE(str1,str2)

str1 and str2 are the strings to be compared. SOUNDALIKE returns TRUE is the strings match, FALSE
otherwise.

SOUNDEX Function
See Also
Description
The SOUNDEX() function returns the soundex code for a string.

Syntax
SOUNDEX(string1)

string1 is the text string for which you wish to determine the soundex value.

Remarks

See Also
 Like Operator
 SOUNDALIKE

SQR Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the Square of a number , n - that is (n * n).

Syntax
SQR(number)

number is any number

See Also
 SQRT

SQRT Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the square root of a positive number.

Syntax
SQRT(number)

number is a positive number. If a negative number is passed to this function, FormulaBuilder returns an
error with status EXPR_DOMAIN_ERROR.

See Also
 SQR

STR Function
See Also String Functions A-Z Function Reference
Description
Converts any value to its string equivalent.

Syntax
STR(value <,places>)

Remarks
The places parameter is relevant only for numeric arguments and specifies an optional number of decimal
places. If ommitted, the function returns the string representation of number as it would be normally
displayed.

See Also
 VAL

SUM Function
See Also String Functions A-Z Function Reference
Description
Returns the sum of all numbers in the list of numeric arguments.

Syntax
SUM(number1, number2,....)

number,number2 are the values for which you wish to find the sum, up to a total of MAXPARAMS values

See Also
 AVG
 PRODUCT

SYD Function
See Also Financial Functions A-Z Function Reference
Description
Uses the Sum-of the-Years-Digits depreciation method to calculate the amount of depreciation in
one period.

Syntax
SYD(Cost,Salvage,Life,Period)

Argument Description
Cost the original cost of the asset
Salvage the expected selling price of the asset at the end of its

life.
Life the number of periods (usually in years) the asset is

expected to be in use. Sometimes called the useful life of
the asset.

Period the period for which you wish to find the depreciation.

Remarks
The following must hold :
Cost >= Salvage >= 0
Life >= Period >= 1

See Also
 DB
 DDB
 SLN

SetVariableCallbacks Method
Applies to
TExpression

Declaration
Procedure SetVariableCallbacks(CBKVFind : TCBKFindVariable;

CBKVGetval : TCBKGetVariable;
CBKVSetVal : TCBKSetVariable;
CBKData : longint);

Description
Register functions to enable external variable processing. Setting callbacks overrides the internal variable
handling routines. All variables must be handled externally . An explanation of the parameters follow in
the discussion of the chapter on “Extending FormulaBuilder”.

See Also
 SOUNDEX
 LIKE Operator

Status Property
See Also
Applies to
All FormulaBuilder Components

Declaration
Property Status : integer;

Description
Returns the last error reported by FormulaBuilder for this object. This value is available regardless of the
state of the UseExceptions property, i.e. exceptions are generated in the UseExceptions = True state after
the Status property is set. The values returned are the EXPR_XXX constants.

Consult the topic Handling Expression Errors for further details.

See Also
 StatusText Method
 UseExceptions Property

StatusText Method
See Also
Applies To
All FormulaBuilder Components

Declaration
Function StatusText : String; Virtual;
Description
Returns the string description of the value of the Status Property. Override this in descendant classes of
TExpression to add your own application specific status messages.

See Also
 EXPR_XXX Constants
 Status Property

StrFormula Property
See Also Example
Applies to
All FormulaBuilder Components

Declaration
Property StrFormula : pchar;
Description
Allows read/write access to the original expression as a null-terminated string. Values obtained from this
property should be disposed of with StrDispose;

StrFormula Property Example
The StrFormula Property allows the use of null terminated strings as the source for expression text. The
following code snippets illustrate the use of the StrFormula property :

Procedure TFORM1.SetStrFormula;
{ Set Expression Text from Memo }
var tmp : Pchar;
Begin
 tmp := Memo1.GetText;
 TRY

Expression1.StrFormula := Memo1.GetText;
 FINALLY

StrDispose(Temp);
 END;
end;

Notice very carefully that the TExpression object does not own the memory allocated to the string
assigned by the StrFormula property. It retains its own copy of the string data and stores it internally. The
caller is responsible for freeing memory as appropriate.The same applies for reading the StrFormula
property :

var
 tmp : Pchar;

begin
 tmp := Expression1.StrFormula;
 Try

ResultMemo.Text := ‘You entered : ‘+Strpas(tmp);
 Finally

StrDispose(tmp);
 End;

 end;

See Also
 Formula Property
 Lines Property

String Constant Examples
"This is a string constant"
'this is another string constant'
"this is a string constant with 'mixed quotes'"
'a concatenated string with a " quote ' +" plus a ' quote"

String Constants
String Constants consist of a series of zero or more characters surrounded by delimiters defining the
beginning of the constant. Either single or double quotes may be used as delimiters, provided that the
same quote type that opens a string constant must be used to close it. String constants can be a
maximum of 255 characters long, including quotation marks. See here for an examples...

String Functions
The string functions manipulate character strings.

Function Description
ASC Returns the ASCII code for the first character in a string
CHAR Returns the character corresponding to an ASCII code.
CLEAN Removes all unprintable characters from a string.
CODE Returns the ASCII code for the first character of a string.
EXTRACT Returns a specific delimited word from a string.
FIND Locates text within a string.
FIRST Returns a specified number of characters from the beginning of a

string.
INSERT Inserts a substring into a string at a specific position.
LAST Returns a specified number of characters from the end of a string.
LENGTH Returns the length of a string.
LOWER Converts text to lowercase.
LTRIM Removes all instances of a specific leading character from a string.
MAXSTR Returns the maximum value in a list of strings.
MINSTR Returns the minimum value from a list of strings.
MID Returns a substring of a string.
PADCENTER Centers a string within a given width.
PADLEFT Pads a string on the right with spaces to a specified length.
PADRIGHT Pads a string on the left with spaces to a specified length.
PROPER Capitalizes the first letter of every word in a string, and lowercases all

other characters.
REPLACE Replaces one substring with another.
REPLICATE Duplicates a string a specific number of times.
RTRIM Removes all instances of a specific trailing character from a string.
SOUNDEX Returns the Soundex code for a string.
SOUNDALIKE Determines if two strings sound alike, based on their Soundex codes.
STR Returns the string equivalent of a value.
TRIM Removes a specific leading and trailing character from a string.
UPPER Converts a string to uppercase.
VAL Converts a string to its numeric equivalent.
WORDCOUNT Returns the number of words in a string.

String Operators
The string operators are used to perform operations on string operands.

Operator Description
+ Concatenation. Joins two strings together.
- Deletes the first occurance of the second operand from the

first.
LIKE Performs a wildcard match on the operands. A LIKE B returns

TRUE if A matches the wildcard specification B. For Example
"AUTOEXEC.BAT" LIKE "*.BAT" returns true.

StringResult Property
See Also Example
Applies to
TExpression, TDBExpression, TDSExpression, TRTTIExpression

Declaration
Property StringResult : String;
Description
Read only. Evaluates the expression, returning its string result. A type mismatch error
EXPR_TYPE_MISMATCH will be generated if the expression type is not vtSTRING. The expression
result type can be pre-determined by using the ReturnType property. To get the result as a string, use the
AsString property.

StringResult Example
The following example assumes that there is a Customer table, table1 with the fields SALUTATION,
LAST_NAME and FIRST_NAME :

var
 nameExpression : TDSExpression;

begin
 NameExpression := TDSExpression.Create(Self);
 with nameExpression do
 begin
 Formula := 'UPPER(SALUTATION) + " " + ' +

 'PROPER(LAST_NAME) + " " + PROPER(FIRST_NAME)';
namePanel.Caption := NameExpression.StringResult;

 end;
end;

See Also
 ReturnType
 AsString

StringSetToInt Function
Unit
FB_RTTI

Declaration
Function StringSetToInt(root : TObject;SetString : String) : Cardinal;

Description
This function converts a set string (expressed as a bracketed list of identifiers separated by commas) into
the equivalent bitmapped integer value. All the identifiers in SetString must belong to the same
enumerated type. Root is the top-level object which is searched recursively to find the enumerated type or
set to which the identifiers in SetString belong. There must be a published enumerated or set property in
the search path to which they belong, or an exception will be raised.

Example
StyleBitmap := StringSetToInt(Form1,'[fsBold,fsItalic]');
GridBitmap :=
StringSetToInt(Grid1,'[goFixedHorizLine,goHorzLine,goRangeSelect]');

StringValues Property
See Also Example
Applies To
All FormulaBuilder Components

Declaration
Property StringValues[const name : TVarName]: string
Description
Allows read/write access to the value of a variable as a string. This applies to variables added by calls to
the AddVariable method. If you assign a value to this property for a variable name that does not exist, a
variable will be created and given the value of the evaluated string. For instance

 Expression.StringValues[‘NewDate’] := ‘Today()’;

creates a new DateTime variable (vtDATE)with a value of today’s date.

Note, however, that for existing variables, expressions are not accepted. Only a valid string representation
of the variable’s value is accepted.

StringValues Property Example
The StringValues property is useful for setting variables based on input from editboxes.

This code assumes we have an initialized TExpression instance named Expression1, and EditBoxes for
each of five variables named Name, BirthDate, Married, Children, and Salary.

Procedure TForm1.AddVariables;
begin
 with Expression1 do
 begin
 { Note that the variables were added before the expression }
 { involving them was assigned to the Formula property }
 AddVariable('Name',vtSTRING);
 AddVariable('BirthDate',vtDATE);
 AddVariable('Married',vtBOOLEAN);
 AddVariable('Children',vtInteger);
 AddVariable('Salary',vtFLOAT);
 AddVariable('PIN',vtFLOAT);
 end;
end; { AddVariables }

Procedure TForm1.StringValues_SaveEdits;
begin
 With Expression do
 begin
 StringValues['Name'] := NameEdit.Text;
 StringValues['BirthDate'] := BirthDateEdit.Text;
 StringValues['Married'] := MarriedEdit.Text;
 StringValues['Children'] := ChildrenEdit.Text;
 StringValues['Salary'] := SalaryEdit.Text;
 end;
end;

Procedure TForm1.StringValues_ValuesToForm;
begin
 With Expression do
 begin
 NameEdit.Text := StringValues['Name'];
 BirthDateEdit.Text := StringValues['BirthDate'];
 MarriedEdit.Text := StringValues['Married'];
 ChildrenEdit.Text := StringValues['Children'];
 SalaryEdit.Text := StringValues['Salary'];
 end;
end;

See Also
 AddVariable Method
 VariableList Property
 Variables Property

TAN Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the tangent of a specified angle

Syntax
TAN(angle)

angle is the angle, in radians, for which you want the tangent. To convert an angle in degrees to radians,
use the RADIANS function.

See Also
 ATAN
 ATAN2
 ATANH
 Pi

TANH Function
See Also Math/Trig Functions A-Z Function Reference
Description
Returns the hyperbolic tangent

Syntax
TANH(number)

number is the cosine of the angle. The cosine can range from 1 to -1.

Remarks
The formula for the hyperbolic tangent is

TANH(X) = SINH(X)/COSH(X)

See Also
 ATANH
 COSH
 SINH

TActParamList Data Type
Pascal
TActParamList = array[0..MAXFUNCPARAMS-1] of TValueRec;

C/C++
typedef TValueRec TActParamList[MAXFUNCPARAMS]
typedef TActParamList, FAR *LPPARAMLIST;

Description
TActParamList is the array type whose values represent the values passed to programmer defined
external functions. The number of array elements,as well as their order and type, are guaranteed to be
the same as specified in the call to FBRegisterFunction when the external function is registered.

TCBKEnumFunctions Callback Type
Pascal
TCBKEnumFunctions = function(name : pchar; vtype : byte;parms :
pchar;minPrms :byte;EnumData : longint):integer;

C/C++
typedef FBERROR (CALLBACK *TCBKEnumFunctions)(LPSTR name,BYTE vtype,LPSTR
parms,BYTE minPrms,LONG EnumData);

Description
Used in conjunction with FBEnumFunctions to enumerate FormulaBuilder run-time functions. A function of
this type gets called for each registered FormulaBuilder function, both built-in and programmer-defined.

Parameter Description
name the name of the function. Function names are not case sensitive.
vtype function return type. See the vtXXX constants in the Constants

Reference.
parms a null-terminated string in which each character represents the type

of parameter for that position

Type Character
Integer 'I'
String 'S'
Date 'D'
Float 'F'
Boolean 'B'
Any 'A'

minPrms the minimum allowable number of parameters, for functions with
variable parameter lists

EnumData The actual parameter specified for the EnumData parameter in the
FBEnumFunctions call. This field is simply a means by which you can
pass data to the callback function. It is strictly programmer defined,
and passed untouched by FormulaBuilder. See the FBEnumFunctions
Example for a typical use of this parameter.

TCBKExternalFunc Callback Type
Pascal
TCBKExternalFunc = procedure(paramcount :Byte;

const Params : TActParamlist;
var retvalue : TValueRec;
var errcode : integer;
 ExprData : Longint);

C/C++
typedef void (CALLBACK *TCBKExternalFunc)(BYTE paramcount, LPPARAMLIST params,
LPVALUEREC retvalue, LPINT errcode,LONG ExprData);

Description
This callback is defined to add programmer defined functions to FormulaBuilder. A routine of this type
must be supplied to FBRegisterFunction for each function the programmer wants to implement. The
function must be declared as _export (in Pascal/Delphi, the procedure header must include the export
keyword). The errcode parameter is set to EXPR_SUCCESS on entry and need only be modified in case
of an error in the callback.

Parameter Description
paramcount count of parameters passed to the callback

params a zero based array of paramcount TValueRecs containing the
parameter values to the function. The expression parser ensures that
the type, count and order of these parameters match those specified
when the function is registered.

retvalue return value type of type TValueRec. The appropriate variant of this
record is set to the function return value. The parser sets the tag field
before the callback is called.

errcode set to EXPR_SUCCESS on entry, this parameter is for programmer
use to flag errors which occur in the function callback. Other values will
cause the expression evaluator to trigger an error when the callback
returns. This value is returned as the result of the currently
executing evaluation function (FBEvaluate, FBEvaluatePrim, etc).

exprdata a user-defined field to allow the programmer to pass data to the
callback. The actual parameter when the callback is executed is the
exprData value passed as the argument to the FBInitExpression
function.

NOTE It is important to note, in regards to the params argument, that FormulaBuilder performs automatic type
conversions between compatible types to ensure that the type specified for a function argument matches its
registered type. For example the built-in function CHAR takes an integer parameter and returns the corresponding
ASCII character. The parser will happily accept 190.78 as an argument, but will truncate it to 190 before passing it to
the function.

TCBKExternalFunc Function Implementation Callback
Type
TCBKExternalFunc = procedure(paramcount :Byte;

const Params : TActParamlist;
var retvalue : TValueRec;
var errcode : integer;
 ExprData : Longint);

TCBKFindVariable Callback Type
Pascal
TCBKFindVariable = function(varname : pchar;var vtype : byte;var vardata :
longint;CKBData : longint):integer;

C/C++
typedef FBERROR (CALLBACK *TCBKFindVariable)(LPCSTR varname,LPBYTE
vtype,LPLONG vardata,LONG CBKData);

Description
This callback is called when the FormulaBuilder expression parser encounters an unknown identifier
varname in the parsing phase , to determine if it represents a valid variable or field identifier. If so, the
function should return EXPR_SUCCESS as its value after setting the appropriate variable/field type in
vtype (see the vtXXX constants). The vtype parameter should be set to vtNONE if the varname does not
represent a valid programmer defined variable.

Remarks
This is the means by which the parser gathers information about the variable/field that is used in the
construction of the expression. The vardata parameter is programmer-definable parameter you may use
as a convenient means of passing data between the two evaluation phases. The parser does nothing with
this field. In most cases, this can serve as a unique identifier for the variable/field, a typecasted pointer to
the storage location of the variable, or an array index if the variable were stored in a list. This allows us to
either eliminate the need for, or limit the overhead of a lookup in the evaluation phase when the value of
the variable is required. The data collected by this event is the same data that is passed to the
CBKGetVariable,and CBKSetVariable callback events.

TCBKGetVariable Callback Type
See Also
Pascal
TCBKGetVariable = Function(varname : pchar;var value : TValueRec;vardata :
longint;CBKData : longint):integer;

C/C++
typedef FBERROR (CALLBACK *TCBKGetVariable)(LPCSTR varname,LPVALUEREC
value,LONG vardata,LONG CBKData);

Description
This event is fired during the evaluation phase when a value is needed for a variable or a field
encountered in the expression. The CBKData parameter is the user-defined value passed in the call to
FBSetVariableCallbacks The varname parameter identifies the name of the variable/field,and the
vardata parameter is the programmer defined value initialized in the TCBKFindVariable Callback. The tag
field of value, vtype, is set to the vtXXX constant denoting the type requested by the callback.The
programmer simply assigns the variable’s value to the appropriate field of the value record. See the notes
concerning TValueRec for more details.

By default, variable are handled internally by the DLL, but this event gives you the flexibility of deciding
how variables are implemented and how they are stored.

See Also
 TCBKFindVariable
 TCBKSetVariable

TCBKSetVariable Callback Type
Pascal
TCBKSetVariable = function(varname : pchar;var value :TValueRec;vardata :
longint;CBKData : Longint):integer;

C/C++
typedef FBERROR (CALLBACK *TCBKGetVariable)(LPCSTR varname,LPVALUEREC
value,LONG vardata,LONG CBKData);

Description
This event is fired during the evaluation phase when the value of a variable or field on the left hand of an
assignment changes. For instance, in the expression :

Force := Mass * Velocity
[parts->OnHand] := [Parts->onHand] - 100

the value of Force needs updating after the right hand side of the expression is calculated. The varname
parameter is the name of the variable. vardata is the same as the programmer defined in the
TCBKFindVariable callback for the variable name.value is the new value to be assigned to the variable.
The parser ensures that the type of the variable matches the type the programmer specified in the
TCBKFindVariable Event. The programmer has the responsibility of updating the variable/field with value.

TDBExpression Component
See Also Properties Methods
Unit
FBDBComp

Description
This subclass enhances the TExpression class by adding access to fields of all BDE (Borland Database
Engine) datasets open on its Database property. These fields can then be treated in the same manner as
variables in expressions.

The syntax for database fields is ‘[’ tablename‘->’fieldname’]’. For example :

TotalCostExpr := ‘ [Items->Price]*[Items->Quantity]*(1 + Vendor->TaxRate])‘;

TDBExpression Example
Suppose we have an order entry system with a Customer and an Order Table. The following example
calculates how much is owed by overdue customers. It could, of course be written using SQL, but this
example shows the flexibility and ease of use of the TDBExpression class.

Procedure TForm1.CalcOverdue;
var exprFilter,exprCost : TDBExpression;
 fTotal : extended;
begin
 CustomerTable.Open;
 OrderTable.Open;
 exprCost := TDSExpression.Create(NIL);
 With ExprCost do begin
 DataBase := OrderTable.Database;
 Formula := '[Orders->TOTAL] * (1 + [CUSTOMER->TAX_RATE])';
 end;
 exprFilter := TDBExpression.Create(NIL);
 exprFilter.Database := OrderTable.Database;
 exprFilter.Formula := '([Customer->BALANCE] > 0) AND '

'((TODAY() - [Customer->LASTPMTDATE]) > 30)';
 fTotal := 0;
 OrderTable.First;
 while not OrderTable.EOF do
 begin

if exprFilter.AsBoolean do
 ftotal := fTotal + exprCost.AsFloat;
orderTable.next;

 end;
 OrderTable.Close;
 CustomerTable.Close;
 resultPanel.Caption := FloatToStr(fTotal);
end;

Methods
 AddBooleanConstant Clear GetVarPtr
 AddConstantPrim Create ParseAddConstant
 AddDateConstant Destroy ParseAddVariable
 AddNumericConstant EvaluatePrim Reparse
 AddStringConstant FreeVariable StatusText
 AddVariable FreeVariableList

TDBExpression Properties
TDBExpression adds the Property Database
All Other properties are derived from TExpression

See Also
 TDSExpression
 TDSFilter
 TExpression

TDSExpression Component
See Also Properties Methods
Unit
FBDBComp

Description
The TDSExpression subclass enhances the TExpression class by adding access to fields of the BDE
(Borland Database Engine) dataset assigned to its Dataset property. These fields can then be treated in
the same manner as variables in expressions. When the expression is recalculated, the value of the
variables are read directly from the fields of the dataset.

Example
If a TTable instance LineItems is open on a line item table containing the fields QUANTITY and PRICE,
the following would be valid :

ExtensionExpr := TDSExpression.Create(NIL);
TRY
 ExtensionExpr.Dataset := LineItems;
 ExtensionExpr.Formula := 'PRICE * QUANTITY‘;
 total := 0;
 while not LineItems.eof do
 begin
 total := total + extensionExpr.AsFloat;
 lineItems.Next;
 end;
FINALLY
 ExtensionExpr.Free;
END;

Properties
 AsString Dataset ReturnType
 AsBoolean Formula Status
 AsDate FunctionCount StrFormula
 AsFloat Handle StringResult
 AsInteger IsNull UseExceptions

See Also
 TDSFilter
 TDBExpression
 TExpression
 TRTTIExpression

TDSFilter Component
See Also Properties Methods Tasks
Unit
FBDBComp

Description
The TDSFilter component implements a high level interface to BDE-level dataset filtering. Using this
component, you are able to filter a datasource based on any valid FormulaBuilder boolean expression.
This component has a major enhancement over the filtering/sorting methods of VCL for LOCAL
databases.

Filters can be based on any valid FormulaBuilder expression returning a boolean result.

they can be applied to any existing local Table or Query. All other filters and ranges of the dataset are
respected

they are completely independent of the current index, and return a dataset that is fully editable. This
avoids the ORDERS BY restriction of Borland's Local SQL, whereby "live" result sets cannot be
returned for certain variations of ORDERS BY clauses.

Credits
TDSFilter is based directly on and incorporates DBFILTUZ.PAS Version 1.06 COPYRIGHT (C) by UZ
[INFOPLAN], CIS ID Address : Uli Zindler 100271,313

Methods
TDSFilter introduces the Refresh method
All other methods are inherited from TDSExpression

NOTE
Unlike for PDX-tables (IDPDX01.DLL), the BDE triggers an exception when a dBASE-table's callback-
filter is aborted (IDDBASE01.DLL, firing EOF-condition). As a workaround to the EOF-trap exception-box,
exceptions are temporarily caught when a filter is to be aborted. UNFORTUNATELY, when "stop on
exceptions" in OPTIONS |ENVIRONMENT set to true, and the debugger is running you'll still be thrown
into that "exception... ,program stopped" mode, but you can resume, by pressing F9 or the RUN-button.
This exception will be visible ONLY occur at Design Time, and will not appear to users.

Properties
= Key property

 Active FilterHandle Lines
 AutoRefresh Formula Priority
 Datasource LoadActivated UseExceptions

See Also
 TExpression
 TDSExpression

TDSFilter Tasks
Using FormulaBuilder With Delphi
Using the TDSFilter Component
Let's suppose we have a DataSource-object (DataSource1) on a form, and that it's linked to either a
TTable or TQuery-object as its DataSet (let's call this one DataSet1)

place a TDSFilter control on your form
connect it to DataSource1
set the Formula or Lines property to a desired filter expression. The fields of Dataset1 are available to
the expression. Field names are handled as variables.
set the AutoRefresh and Priority properties to desired values
set the Active Property to true

Records are included or excluded based on the expression entered in the Formula or Lines property. As
such, the expression must evaluate to a boolean, otherwise a EXPR_TYPE_MISMATCH error will be
generated. Filtering is implemented through a private method of the TDSFilter. NOTE: number of calls
varies thru the BDE caching and buffering mechanisms of DELPHI

LIMITATIONS
This component works only on Datasources connected to LOCAL datasets. It may not work on
correctly on remote SQL-driven databases, etc.

Do NOT try to access detail-controls (in case the active filtered DataSet is the master-side in an 1:n
relation), they may be invalid at the time. Instead, use appropriate checks on the DETAIL-side of two
1:n linked DataSets, where, the master-controls will be reflect proper data when the Dataset's current
record is being filtered.

NOTE

TERM Function
See Also Financial Functions A-Z Function Reference
Description
Returns the number of payment periods required to accumulate an investment (future value)
given a regular series of payments and a fixed interest rate.

Syntax
TERM(Pmt,Rate,Fv,Type)

Parameter Description
Pmt a numeric value representing the amount of the fixed periodic

payment.
Rate a numeric value representing a fixed, periodic interest rate

accrued by the investment
FV a numeric value representing the amount to which the investment

will grow (the future value)
Type a numeric value denoting the payment type - 0 for an ordinary

annuity (the default) or 1 for an annuity due.

See Also
 CTERM
 NPER

See Also
 TDBExpression
 TDSExpression
 TDSFilter
 TRTTIExpression
 EFBError

TExpression Component
See Also Properties Methods Events Tasks
Unit
FBComp

Description
TExpression is the basic component wrapper around the FormulaBuilder DLL. It provides convenient
OOP access to the functionality of FB. It also serves as the ancestor class for TDSExpression and
TDBExpression, which are Data-Aware.

Variable Support
Variable support may be handled in 2 ways

using the default processing of the FormulaBuilder engine. This is the standard behavior.
by delegation. Simply assign methods to the OnFindVariable, OnGetVariable and the OnSetVariable
event properties.

You can programmatically control how variables will be handled by setting the UseEvents property.
Setting it to FALSE (default) means that FormulaBuilder will handle all variables internally. Setting the
property to TRUE means that the variable handling events will be invoked to allow you to manage
variables in your own code in addition to the internally handled variables.

Field Support
Fields were added to allow for variables whose names do not fit the usual convention for variable names.
There is therefore no default handling of fields, and using them requires that the event properties.
OnFindVariable, OnGetVariable and optionally OnSetVariable be assigned to methods which identify,
retrieve and set the values of fields identified in text expressions. In the OnFindVariable event, a field may
be distinguished by the fact that the varname parameter still contains the field delimiters "[" and "]".

In all other respects, however, fields are handled identically to variables.

Events
 OnFindVariable
 OnGetVariable
 OnSetVariable

Methods
 AddBooleanConstant Clear GetVarPtr
 AddConstant Create ParseAddConstant
 AddDateConstant Destroy ParseAddVariable
 AddNumericConstant EvaluatePrim Reparse
 AddStringConstant FreeVariable StatusText
 AddVariable FreeVariableList

Properties
 AsBoolean FunctionCount StringResult
 AsDate Handle StringValues
 AsFloat IsNull UseEvents
 AsInteger Lines

UseExceptions
 AsString Returntype VariableCount
 Constants Status VariableList
 Formula StrFormula Variables

TFBDate Type
Pascal
Type

{$IFDEF VER80} (* compiler is Delphi *)
TFBDate = TDateTime;
{$ELSE}
TFBDate = Double;
{$ENDIF}

C/C++
typedef double TFBDate,TFBDATE, FAR *LPFBDATE;

Description
TFBDate is the internal type used to store Date/Time values. It is actually a double which stores the date
value as the integer portion and the time value as the fractional portion.

TFBString Type
Pascal
Type TFBString = PString;

C/C++
typedef char FBString[256];
typedef FBString *TFBSTRING,FAR *LPFBSTRING;

Description
TFBString is the type that FormulaBuilder uses internally to store string values. It is a pointer to a Pascal
byte string, i.e. a string in which the first byte represents the length of the string, followed by the string
data. Since the length of the string is byte-sized, FormulaBuilder strings and string results are limited to
255 characters. C/C++ and VB users should use the Utility Functions to deal with variables of this type.

See Also
 TCBKFindVariable Callback

TFindVariableEvent Type
See Also
Unit
FBCOMP

Declaration
TFindVariableEvent = Procedure(const varname : string;
 var vtype : byte;
 var errcode : integer

 var vardata : longint) of object;

Description
This event is called when the parser encounters an unknown identifier varname in the parsing phase , to
determine if it represents a valid variable or field. If so, the function should set the errcode parameter
value to EXPR_SUCCESS after setting the appropriate variable/field type in vtype (see the vtXXX
constants). The vtype parameter should be set to vtNONE if the varname does not represent a valid
programmer defined variable or field. errcode can be set to any of the EXPR_XXX constants to give more
details on errors which occur in the event. It is set to EXPR_SUCCESS on entry, and if changed will
cause an error to be generated when the event returns.

Note
Field names include the enclosing brackets when passed into the varname parameter.

Remarks
The vardata parameter may be set to any programmer defined value which may help in subsequent
lookups of the variable. This is the same value that will be passed to the TGetVariableEvent event type
when the value of the variable varname is needed in the evaluation phase. In most cases, this can serve
as a unique identifier for the variable/field, a typecasted pointer to the storage location of the variable, or
an array index if the variable/field were stored in a list.

See Also
 OnGetVariable event

TGetVariableEvent Type
See Also
Unit
FBCOMP

Declaration
TGetVariableEvent = Procedure(const varname : string;
 var value : TValueRec;
 var errcode : integer;

 vardata : longint) of object;
Description
The TGetVariableEvent type points to a method that gets called when the expression engine needs the
value of the variable or field varname that was previously identified in the OnFindVariable event. vardata
is the programmer defined value set in the OnFindVariable event. The value of the variable should be
copied to the appropriate field of the value parameter. See the definition of TValueRec for additional
information. The tag field of value is set on entry. errcode should be set to any appropriate EXPR_XXX
constant to indicate any errors occurring during the event. It is only necessary to set errcode in the event
of an error, since it is set to EXPR_SUCCESS on entry to the event.

Note
Field names include the enclosing brackets when passed into the varname parameter.

TIME Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the date/time serial number from individual Hour, Minutes and Seconds values.

Syntax
TIME(hour,minutes,secs)

hour a number between 0 and 23, representing the hour, where 0 is 12:00am and 23 is 11:00pm
minutes a number between 0 and 59
secs a number between 0 and 59

Remarks
If the specified values are not within range, an EXPR_CONVERT_ERROR error is raised. The resulting
value represents the fraction of the day represented by the time hour:minutes:secs

See Also
 TIMENOW
 TIMETOSTR
 TIMEVALUE

TIMENOW Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the time-serial number of the current time according to the system clock.

Syntax
TIMENOW()

Remarks
TIMENOW returns the current time as a fractional portion of the day. This is stored in the fractional part of
the returned value. the integer portion of the returned value will be 0 (zero).

See Also
 NOW
 TIMETOSTR

TIMETOSTR Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the string representation of a time serial number

Syntax
TIMETOSTR(time_serial)

time_serial is a time serial value

See Also
 STR
 TIMEVALUE

TIMEVALUE Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the time serial number of a text string.

Syntax
TIMEVALUE(Timestr)

Timestr is a text string in any valid time format.

Remarks
The time serial number represents a decimal fraction representing the times from 0:00:00 (12:00:00 A.M.)
to 23:50:59 (11:59:59 P.M.)

For example
0.0 represents 12 midnight
0.5 represents midday (12:00 P.M.)

See Also
 TIMETOSTR

See Also
 AsString

See Also
 AsString

See Also
 AsString
 Kind
 Typename

See Also
 AsBoolean
 AsString
 Kind
 Typename

See Also
 Kind

See Also
 AsBoolean AsMethod
 AsChar AsObject
 AsFloat Kind
 AsInteger

TInstanceProperty Object
Properties Methods
Unit
FB_RTTI

Description
The TInstanceProperty class encapsulates a single published property of an object instance. This
provides a higher level interface to the TYPINFO unit provided by Borland to access Runtime Type
Information (RTTI).

 Reading and setting the AsString property of this class changes the value of the associated instance
property and produces the expected Delphi runtime behaviour. The PropName property returns the
name of the instance property, and Instance reads and sets the object Instance to which the property
belongs. TypeName returns a string with the Object Pascal type the property was defined as. Use
IsReadOnly to determine if the property is readonly, and isStored to determined if it is automatically stored
using Delphi's streaming mechanism. The IsDefault property returns true if the value of the instance
property is the default value for that property.

Methods
 Create
 CreateFull
 CreateFromPath
 CreateFromSearch

Properties
 AsBoolean AsString Kind
 AsChar Instance Propname
 AsFloat IsBoolean TypeName
 AsInteger IsDefault TypeData
 AsMethod IsReadOnly PropInfo
 AsObject IsStored

TODAY Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns today's date as a date serial number value

Syntax
Today()

See Also
 NOW
 TIMENOW

TRIM Function
See Also String Functions A-Z Function Reference
Description
Trims a string of a specified character on both the left and right

Syntax
TRIM(source <, trimchar>)

source is the original string
source is left and right trimmed of the first character in trimchar. If trimchar is not specified, space is
assumed.

See Also
 LTRIM
 RTRIM

TRTTIExpression Component
See Also Properties Methods Tasks
Unit
FBRTComp

Description
The TRTTIExpression component allows one access to the published properties (recursively) of a given
Delphi object using Delphi's Runtime Type Information (RTTI). Properties are handled as "dot-notated"
FormulaBuilder field identifiers, and reading and setting them has the expected Delphi runtime behaviour.

Properties
 Formula
 Lines
 Root
 UseExceptions

See Also
 RTTIError
 TDBExpression
 TDSExpression
 TDSFilter
 TExpression

TRTTIExpression Tasks
Using FormulaBuilder With Borland Delphi
Using the TRTTIExpression Component
Since this expression type retrieves runtime type information, its properties must also be set at runtime.
The Root property must be set before text is assigned to the Formula or Lines properties.

place a TRTTIExpression control in your form
in the FormCreate event, set the Root property to the object or component whose properties you wish

to access. To have access to all published properties in an application, set the Root property to
Application.

set the Formula or Lines property to a desired expression. The properties of Root are available to the
expression. Property names are handled as variables.

Property Paths
Setting the Root property establishes scope for expression property variables. When using property
names in expressions, the full path to the property from Root must be used.

For instance, if Root is set to an instance of a TForm, valid property paths would be

[Caption]
[Font.Name]

Note also that you also have (recursive) access to the properties of named components contained in the
Components array of components. For instance, given the same form which contains a TDataSource
named CustomerSource, we could use the following property :

[CustomerSource.Dataset.Tablename]

CustomerSource is visible to the expression since the Delphi Form Designer automatically adds the
CustomerSource (and all owned components) to the Form.Components array.

If the Root property were set to Application, and our form were named CustomerForm, we would write the
properties as follows :

[CustomerForm.Caption]
[CustomerForm.Font.Name]
[CustomerForm.CustomerSource.Dataset.Tablename]

Type Equivalences
Delphi Property Types are mapped to FormulaBuilder types as follows :

Delphi FormulaBuilder
tkInteger vtINTEGER
tkEnumeration all except boolean are mapped to vtINTEGER.

Boolean is mapped to vtBOOLEAN.
tkSet vtINTEGER
tkFloat vtFLOAT
tkString vtSTRING
tkClass vtPOINTER
tkMethod vtPOINTER

Check the interface file TYPINFO.INT in the \DELPHI\DOC\ directory for the Delphi Property types.

Enumerated Type and Set Identifiers

Enumerated and Set type identifiers may be used for a published property of that type. For instance, the
following is valid for the above CustomerForm example

[CustomerForm.Font.Style] := fsBold or fsItalic

LIMITATIONS
This component works for all types except Classes and Methods. Assignment and equality testing of
Class and Method types will be supported in a later release.

TSetVariableEvent Type
Unit
FBCOMP

Declaration
TSetVariableEvent = Procedure(const varname : string;
 const value : TValueRec;
 var errcode : integer;

 vardata : longint) of object;

Description
This event type points to a method which is called when a field or variable in an expression needs to be
updated with the results of the calculation. This occurs only for assignment expressions, i.e. expressions
of the form

variable := expr or
field := expr

When the right side of the statement is calculated, the OnSetVariable event is called to allow the
programmer to update the value of the field or variable. varname is the name of the field/variable. vardata
is the programmer defined data set in the OnFindVariable event. value is the TValueRec structure
describing the new value for the variable/field. It is the programmer's responsibility to update the value of
the variable/field with the appropriate field of the value record.

See Also
 OnSetVariable

TSetVariableEvent Type
See Also
Unit
FBCOMP

Declaration
TSetVariableEvent = Procedure(const varname : string;
 const value : TValueRec;
 var errcode : integer;

 vardata : longint) of object;

Description
This event is fired during the evaluation phase when the value of a variable or field on the left hand of an
assignment changes. For instance, in the expression :

'Force := Mass * Velocity'
'[parts->OnHand] := [Parts->onHand] - 100'

the values of Force and parts->onHand need updating after the right hand side of the expression is
calculated. The varname parameter is the name of the variable. vardata is the same application specific
data the programmer assigned in the OnFindVariable event for the variable. value is the new value to be
assigned to the variable/field. The parser ensures that the type of the variable (the vtype field of the value
structure) matches the type the programmer specified in the OnFindVariable Event. The programmer has
the responsibility of updating the variable/field with value. The programmer has the responsibility of
updating the variable with value. You may set the errcode parameter to any one of the EXPR_XXX
constants to indicate an error condition. It is not necessary to set it otherwise - the value of errcode on
entry to this method is EXPR_SUCCESS.

TValueRec Type
Pascal

 PValueRec = ^TValueRec;
 TValueRec = record

flags : byte;
case vtype : byte of

vtINTEGER : (vInteger : Longint);
vtSTRING : (vpString : PString);
vtPOINTER : (vPointer : Pointer);
vtBOOLEAN : (vBoolean : Boolean);
vtCHAR : (vChar : Char);
vtFLOAT : (vFloat : Float);
vtDATE : (vDate : TDateTime);

 end;

C/C++

typedef struct tagTValueRec {
 BYTE flags;
 BYTE vtype;
 union {
 long vInteger;
 boolean vBoolean;
 unsigned char vChar;
 float vfloat; // double
 TFBString vpString;
 TFBDate vDate;

 LPVOID vPointer;
 }
 } TVALUEREC,TValueRec, *PVALUEREC, FAR *LPVALUEREC;;

Remarks
The vtype Field describes the expression return type, with the corresponding variant holding the
appropriate value.

Integer values are stored as long (32 bit) integers
Float values are stored as 8 byte Doubles
String values are stored as a pointer to a byte string (Pascal type string). The first byte contains the
length of the string, with the string data immediately following. C and Basic programmers should use
the utility functions to deal with the vpString field of the TValueRec
Date/Time values (or serial numbers) are stored as a double
Numbers to the right of the decimal point represent the fractional portion of the day. For example 0.5
represents noon (12:00 PM), 0.75 represents 6 PM, and 0 represents midnight.
Numbers to the left of the decimal point represent the number of days since 1/1/001, minus 1. i.e 1.0
represents the date 1/1/0001.
Date and time values may be combined to uniquely identify a time and date.

TVariable Type
Declaration
Type
 TVariable = Record

Name : string[30];
Value : TValueRec;

 end;

Description
This is the variable type used in the Delphi wrapper class TExpression and its descendants. It is returned
from the array properties Variables and VariableList. If a variable is assigned to a TVariable , FBFreeValue
should be called on the value field after the variable is no longer needed.

Technical Support
YGB Software,Inc can help you with any problem you encounter installing or using FormulaBuilder.
Support for FormulaBuilder will be primarily through e-mail, though other means may be made available.

 E-Mail
You can contact us through CompuServe at 103515,1757, or via the Internet at
103515.1757@compuserve.com

Postal-Mail
Please address your correspondence to:

Technical Support Department
YGB Software, Inc.
161 Pearl St.
Paterson, NJ 07501
USA

The Evaluation Process
Expression Evaluation is broken into two discrete steps

Parsing Phase - the parser scans the input stream for a valid infix expression, translating it into tokenized
RPN (Reverse Polish Notation) form . The intermediate step may seem superfluous, but has its inherent
advantages. First, RPN is a more compact means of representing expressions than infix. Given
equivalent expressions in infix and RPN, the RPN representation can be evaluated as least as quickly,
and in most cases quicker, than the corresponding infix representation. Second, the infix expression is
completely tokenized in this phase - all functions, variables, fields, constants, operators and other tokens
are pre-identified. FormulaBuilder scans and parses the expression only once, regardless of the number
of times the expression is evaluated. In the majority of cases, expressions will be calculated in loops, with
only the value of variables being modified. This approach eliminates the overhead of the parsing
process on subsequent evaluations of the expression

Evaluation Phase - the intermediate representation is translated into a single value representing the
result of the input expression.

The Usual Approach
The Old Way
We can certainly proceed as we have done in the previous examples and call AddVariable (or
FBAddVariable) for each of the variables in the equation. Then each time we want to evaluate the formula
for a new scenario, we would have to set each variable's value before we recalculate the expression. This
approach raises a few concerns :

If we want to allow the user to modify the equation. we will have to hard-code ALL the
variables which could possibly be used in the equation. This may be plausible for database
tables, but restrictive for even a medium sized spreadsheet. Added to this, we would have to do this
for EACH expression instance.

The old approach can be tedious and inefficient for a large set of variables. In our example,
data will be derived from a spreadsheet as well as a database, so we will have to access the
appropriate data source to obtain the values , THEN we would call the appropriate routine to set the
variable to the value. This can be very inefficient, since it is quite likely that not all of the variables
will be used in the equation.

Suppose we have multiple sources of data. For instance, say we wish to have two sets equations -
one based on last year's financial data, and one based on the current year's performance. This is not
a problem if the structure of the database and spreadsheet are the same between fiscal periods. If
this assumption cannot be made, however, generalizing the retrieval of variable values may be
difficult.

The vtANY Type : Example 1
FormulaBuilder has a built-in function IIF which returns the value of one of two expressions based on a
boolean condition. Its syntax is

IIF(condition, true_expr, false_expr)

If condition evaluates to true, the value of true_expr is returned, otherwise false_expr is returned. Both
true_expr and false_expr may be of any of the types supported by FormulaBuilder. Since this is the
case, the IIF function must also be able to return any type.

An implementation of the IIF function is as follows :

procedure IIFProc(paramcount : Byte;
 const Params : TActParamlist;
 var Retvalue : TValueRec;
 var errcode : integer;
 ExprData : longint); export;
var condition : boolean;
begin
 condition := params[0].vBoolean;
 if condition then
 retvalue := FBCopyValue(params[1]) {retvalue must be a copy, since }
 else { params array is destroyed after return }
 retvalue := FBCopyValue(params[2]);
end;

IIFProc is registered as follows :

 IIFFnid := FBRegisterFunction('IIF',vtANY,'baa',3,IIFProc);

The vtANY Type : Example 2
It is not immediately obvious from the IIFProc example that the arguments can be of different types. To
demonstrate this, we will implement a function PARMINFO which returns a string describing the
parameters passed to it

 Procedure ParamInfoProc(paramcount : byte;
 const params : TActParamList;
 var retvalue : TValueRec;
 var errcode : integer;
 exprdata : longint); export;
 var i : integer;
 tmpstr : string[255];
 anycount,intcount,stringcount,
 floatcount, boolcount, datecount : integer;

 begin
 intcount := 0;
 floatcount := 0;
 boolcount := 0;
 datecount := 0;
 anycount := 0;
 stringcount := 0;
 if paramcount = 0 then
 begin
 tmpstr := ' No parameters '+#0;
 retvalue.vpString := FBCreateString(@Tmpstr[1]);
 exit;
 end;
 for i := 0 to pred(paramcount) do
 with params[i] do
 begin
 case vtype of
 vtInteger : inc(intCount);
 vtstring : inc(stringcount);
 vtFloat : inc(floatcount);
 vtboolean : inc(boolCount);
 vtdate : inc(datecount);
 vtany : inc(AnyCount); { should NEVER get here }
 end;
 end;
 tmpstr := ' %d Params : %d Ints, %d Strings,%d Booleans, %d Floats, '

 +'%d Dates , %d variants ';
 tmpstr := format(tmpstr,[paramcount,intcount,stringcount,
 boolcount,floatcount,datecount,AnyCount]) + #0;
 retvalue.vpString := FBCreateString(@tmpstr[1]);
 end;

The registration statement should look as follows :

ParamInfoFnId :=
FBRegisterFunction('PARMINFO',vtSTRING,'aaaaaaaaaaaaaaaa',1,ParamInfoProc);

The vtANY Type : Example 3
The built in SUM function takes only numeric values, and will raise an error if other types are entered as
parameters. It is sometimes useful, however, to permit other types of arguments, whether or not the
function uses them. Spreadsheets for example have functions such as @SUM and @AVG which work on
ranges which may contain non-numeric data. In such cases those cells with non-numeric data are
ignored.

We will implement a sum function which works along the lines of a spreadsheet summation function, in
other words, we will simply ignore non-numeric values rather than raise an error.

 Procedure AtSumProc(paramcount : byte;
 const params : TActParamList;
 var retvalue : TValueRec;
 var errcode : integer;
 exprdata : longint); export;
 var i : integer;
 sum : extended;

 begin
 sum := 0;
 for i := 0 to pred(paramcount) do
 with params[i] do
 begin
 case vtype of
 vtInteger : sum := sum + vInteger;
 vtFloat : sum := sum + vFloat;
 end;
 retvalue.vFloat := sum;
 end;

We register ATSUM as follows :

var AtSumFnId : integer;
begin
 AtSumFnId := FBRegisterFunction('AtSum',vtFLOAT,

'aaaaaaaaaaaaaaaa',1,AtSumProc);
end;

Type And Constant Reference
This section provides an alphabetical reference to the types, constants and variables not otherwise
covered in this document.

EXPR_XXX Constants
HEXPR
TActParamList
TFBDate
TFBString
TValueRec Type
TVariable
vtXXX Constants

Limits
Floating point results 5E-45 to 1.7E308, 15 significant digits
Integer results -2147483648 to 2147483647
String Results and Constants 255 characters
Max number of DLL clients limited by memory
Max number of expressions 16,000
Max number of variables per expression limited by memory
Max size of expression 32k
Number of Variables Per Expression 16,000
Number of Constants limited by memory

Typename Property
see also example
Applies To
TInstanceProperty

Declaration
Property Typename : String;
Description
Returns the Object Pascal type identifier describing the type of the instance property.

Typedata Property
see also
Applies To
TInstanceProperty

Declaration
Property Typedata : PTypedata

Description
Returns a PTypeData pointer to the property's type data. See TYPINFO.INT for more information.

see also
 Typename property

Typename Property example
Procedure TForm1.DisplayFontStyleType
var
 StyleProp : TInstanceProperty;

begin
 StyleProp := TInstanceProperty.CreateFromPath(Font,'Style');
 Try
 Panel1.Caption := StyleProp.Typename; {caption will show 'TFontStyles'}
Finally
 StyleProp.Free;
 End;
end;

See Also
 Typedata property

UPPER Function
See Also String Functions A-Z Function Reference
Description
Returns a string with all uppercase characters.

Syntax
UPPER(source)

Source is the string to be uppercased

See Also
 LOWER
 PROPER

UseEvents Property
Applies To
TExpression

Declaration
Property UseEvents : boolean;

Description
Read/write. This property determines whether the events OnFindVariable, OnGetVariable and
OnSetVariable are used by the expression instance. If UseEvents is FALSE (the default), the expression
instance only references the internally managed variables added with AddVariable and
ParseAddVariable. You simply need to call AddVariable for each variable you wish to use, and those
variable names may then be used in the expression text.

Setting UseEvents to TRUE allows you to handle variables in your own code in addition to the default
behavior. In this state, the expression instance will call the OnFindVariable, OnGetVariable and optionally
the OnSetVariable event handlers that you define in your code. If you set UseEvents to TRUE, and have
not assigned methods to at least the OnFindVariable and OnGetVariable, you will get an error message.

UseExceptions Property
See Also
Applies to
All FormulaBuilder Components

Declaration
Property UseExceptions : boolean;
Description
This property determines whether FormulaBuilder errors will be generate exceptions in the expression
classes. If not, the EXPR_XXX constant representing the error will returned in the Status property of the
component.

See Also
 EFBError
 Status
 StatusText

 Using FormulaBuilder
FormulaBuilder 1.0 is implemented as a standard Windows 16bit Dynamic Link Library. If you are
familiar with accessing DLLs from your programming environment, the process of using FormulaBuilder in
your projects should be straightforward. There are header files provided for each of the environments
supported by FB.In addition, we have provided several classes to greatly simplify the use of the toolkit for
Delphi programmers. This is covered in the Delphi Component Reference:

Click on one of the following for information on using FormulaBuilder in your development environment,

 Delphi

 Visual Basic

Advanced users and users of other programming tools should go to the DLL Reference section of this
document. Regardless of the environment, using FormulaBuilder follows these basic steps.

Using FormulaBuilder With Visual Basic
Using FormulaBuilder in any project follows a basic flow. The following provides further details specific to
the Visual Basic environment.

Adding FormulaBuilder To a Visual Basic Project
Initializing An Expression
Freeing the Expression
Assigning The Text To Be Evaluated
Retrieving The Expression Text
Clearing An Expression
Determining an Expression's Return Type
Getting Results
Using Variables
Handling Expression Errors

Using FormulaBuilder with Delphi
This section outlines the basic tasks associated with incorporating FormulaBuilder into a Delphi project. If
you have not yet done so, please consult the Delphi Component Reference for an overview of the
available components. Using FormulaBuilder in any project follows a basic flow. The following provides
further details specific to the Delphi environment.

Tasks
Installing FormulaBuilder Components
Important Preliminary Issues
Adding An Expression Instance To A Form
Initializing The Expression
Freeing the Expression
Assigning The Text To Be Evaluated
Determining If Expression Text has been Assigned
Clearing An Expression
Determining an Expression's Return Type
Getting Results
Using Variables
Handling Expression Errors
Adding Additional Functions
Advanced Variable/Field Handling
Using The Data-Aware Expression Types

Using The Data-Aware Expression Types
The FormulaBuilder Delphi Classes TDSExpression and TDBExpression allow you to use expressions
based on BDE datasets. The TDSFilter expression implements a flexible FB expression based filter for
datasources.

Initializing the Data-Aware classes follows the same procedure as the non-data-aware TExpression.
Their use is also similar with the exception of where variable data is derived from.

Setting The Data Source

Using The Variable/Field Callback Functions
External Variable/Field Handling
The Variable/Field Callback functions allow us to generalize the handling of variables. this has numerous
advantages :

Variables become totally dynamic and virtualized. We no longer have to hard-code variable
names. When FormulaBuilder detects an identifier it suspects may be a variable it calls your code to
identify it. If our Stock Market program had the capability of linking to various databases and tables with
different field structures, we would not necessarily need to know the structure of tables beforehand.
Our callback routine would compare the unknown identifier with the list of field names to see if there is a
match. This is precisely the approach taken in the data-aware classes TDSExpression and
TDBExpression.

Since we are also dealing with spreadsheets in our example we can examine the unknown identifier to
see is its format fits the cell naming convention for our spreadsheet. If so, we can use whatever means
we need (DDE for example) to access the value of the variable.

Variable values can be derived directly from their source. In the evaluation phase of the
expression evaluation process, FormulaBuilder calls a routine of the type TCBKGetVariable to retrieve the
current value of a variable.

Using our example, the callback routines retrieve the current value directly from either the database or
the spreadsheet. Since no restriction is placed on what occurs in the callback, we have no limitations on
how we access the variable data. We could, if we wish, retrieve the data over a DDE link, or perform
some transformations on the value before passing it back to FormulaBuilder.

There is no need for a list of FBSetVariable or (SetVariable) calls. The callback routine will only
be called for the variables that have been used in the formula.

Multiple expression instances can derive their data from the same data sources.

Using Variables
Default Variable Processing
FormulaBuilder makes it easy for you to define and use variables in expressions. By default, all variable
handling is taken care of automatically : a list of variables is maintained internally for each TExpression
TDBExpression and TRTTIExpression instance.

Adding Variables
How Many Are There ?
Getting And Setting Variable Values
Removing Variables

Advanced Variable Processing
For more sophisticated needs, you may elect to process variables within your own code. By delegating
variable handling events to custom methods and setting the UseEvents property to TRUE, you gain the
flexibility of handling variables in the manner most appropriate for your application. See Advanced
Variable/Field Handling for greater detail.

Utility Routines
The following routines are provided to handle FormulaBuilder types and perform conversions between
those types and types native to Windows programming environments.

FBCopyValue
FBCreateString
FBDateToPasString
FBFreeValue
FBlpzToDate
FBPasStringToDate
FBStringToDate
FBStrncpy

VAL Function
See Also String Functions A-Z Function Reference
Description
Converts a string into its numeric (float) equivalent

Syntax
VAL(numstring)

numstring is a string with a valid string representation of an integer or floating point number.

See Also
 STR

VB : Adding Variables Example
Example
Sub Form_Load ()
 handle& = FBInitExpression&(0)
 status% = FBAddVariable%(handle&,"Age",vtINTEGER)
 status% = FBSetIntVariable(handle&,"Age",31)
 status% = FBAddVariable%(handle&,"Married",vtBOOLEAN)
 status% = FBAddVariable%(handle&,"Dependents",vtINTEGER)
 status% = FBAddVariable%(handle&,"Salary",vtFLOAT)
 status% = FBParseAddVariable(handle&,"Name"," Proper('John' + 'Smith') ")
 status% = FBParseAddVariable(handle&,"BirthDate"," TODAY() - (365 * Age) ")
End Sub

VB : Assigning The Text To Be Evaluated
Expression Text is assigned to the evaluation engine by a call to FBSetExpression

Example
' This example assumes that handle& has been defined and set by
' a call to FBInitExpression
'
' handle& = FBInitExpression(0)

Declare Function SetFormula(ByVal formula$) as Integer
Dim result As String * 256
 status% = FBSetExpression%(handle&, formula$)
 If status% <> EXPR_SUCCESS Then
 beep
 FBGetErrorString Status%,result$,254
 MsgBox "Error In Expression : "+result$
 SetFormula = FALSE
 Else
 SetFormula = TRUE
 End If
End function

VB : Clearing An Expression
The FBClearExpression function sets the text and tokenized versions of an expression to NULL, and
returns an expression instance to the state it would be in after a call to the FBInitExpression call.

Note It is not necessary to clear an expression before changing the expression text. For instance, there is
no need for a FBClearExpression in the following code :

Sub UpdateCalc()
Dim result as String * 256
 Status% = FBSetExpression%(handle&,"Sin(X^2) * Abs(X * COS(Y))")
 Status% = FBEvaluate%(handle&,result$,255)
 Panel1.Caption = result$
 Status% = FBSetExpression%(handle&,"IIF(WeekDay(Today()= 2,TRUE, FALSE)")
 Status% = FBEvaluate%(handle&,result$,255)
 Panel2.Caption := result$
End Sub

VB : Determining an Expression's Return Type
As soon as the text of an expression is set using the FBSetExpression% call the engine "compiles" the
text expression into a tokenized form. A benefit of this process is that the result type of the expression
may then be determined without evaluating the expression.

If the expression is valid, the FBGetReturnType% function returns one of the vtXXX constants describing
the result type the expression will return upon evaluation. If the expression is invalid, the function will
return vtTYPEMISMATCH.

For example, if we had called FBSetExpression% with each of the following strings, the
FBGetReturnType% would reflect the type of result that would be expected :

Text Expression Return Type
'Sin(X) / LN(X^2)' vtFLOAT
'TODAY() - 365' vtDATE
'WEEKDAY(TODAY()) > 5' vtBOOLEAN

Note There are certain built-in functions (CHOOSE and IIF for example) which may return any of the
standard FormulaBuilder types. If these functions are used in a text expression, FormulaBuilder will try to
determine the return type based on the other operators and operands used in the expression. In certain
cases it is impossible for the engine to figure out the return type beforehand. In these instances a vtANY
is returned.

VB : Getting Expression Results
Once an expression has been properly initialized with FBInitExpression, and given a valid text formula to
evaluate (by calling FBSetExpression), we can get the results from the expression with a call to the
FBEvaluate function.

To get the result of an expression in native format, use the FBGetXXXResult functions, where XXX
represents the variable type. To determine the result type of an expression, use the FBGetReturnType%
function.

VB : Handling Expression Errors
Most FormulaBuilder functions return one of the EXPR_XXX constants describing the status of the
operation. To get a text description of the error code, use the FBGetErrorString procedure.

Example

Sub DisplayErrorMessage(ByVal code%)
Dim errorText As String * 121
 if code% = EXPR_SUCCESS then
 ' no error, just exit
 exit sub
 End if
 FBGetErrorString code%, errorText$, 120
 Beep
 MsgBox errorText$, MB_ICONHAND
End Sub

VB : Retrieving The Expression Text
Expression text previously set with FBSetExpression can be retrieved with the FBGetExpression call.

Example
Dim formula$ as String * 256
Dim Status as Integer
Status% = FBGetExpression%(handle&,formula$,255)

VB : Using Variables
Adding Variables Example
Variables are added using the FBAddVariable function. You may also add a variable based on the value
of a text expression using the FBParseAddVariable function.

Disposing Variables
FBFreeVariable may be used to dispose of a single named variable. To dispose of all variables related to
an expression, us the FBFreeVariableList function.

Counting Variables
You can determine the number of variables added by calls to FBAddVariable and FBParseAddVariable
by using the FBGetVariableCount function.

Getting Variable Values
Depending on the type of variable, its value may be retrieved using one of the FBGetXXXVariable
functions, where xxx represents the variable type. To retrieve the string value of a variable, regardless of
its type, use the FBGetVarAsString function.

In addition, the FBPeekVarVB functions allows access to variables by numeric index. Use this along with
the FBGetVariableCount function to iterate through the list of variables associated with an expression.

Setting Variable Values Example
Depending on the type of variable, its value may be set using one of the FBSetXXXVariable functions,
where xxx represents the variable type. To set the value of a variable from a string, use the
FBSetVarFromString function.

VB : Variable Setting Example
' Plots the graph of Formula$ for numpts% evenly spaced values of x between
' XMin# and XMax#.
' Assumptions :
' Formula$ contains an expression in terms of a variable X,
' e.g. "Sin(radians(x)) + Cos(ln(X))
' Xmin# < XMax#, numpts% >= 2
' There is a VB Graph control on the form named FormulaGraph
'

' SUB to display FormulaBuilder Errors
Sub DisplayErrorMessage (ByVal code%)
 Dim errtxt As String * 256
 FBGetErrorString code%, errtxt$, 255

 If code% <> EXPR_SUCCESS Then
 errtxt$ = "ERROR > " + errtxt$
 Beep
 End If

 MsgBox errtxt$, MB_ICONHAND, "Expression Error"

End Sub

Sub PlotGraph (ByVal Formula$, ByVal XMin#, ByVal XMax#, ByVal numpts%)
 Dim Ydata#, xDelta#, Xdata#, YMin#, yMax#
 Dim tmp#, cnt%
 Dim errcode%, returntype%
 Dim graphExprH&

 graphExprH& = FBInitExpression(0)
 If graphExprH& < 0 Then
 MsgBox "Cannot initialize graph expression", MB_ICONHAND
 Exit Sub
 End If

 ' Add a float variable to the engine. FormulaBuilder manages it
 ' it for you
 '
 errcode% = FBAddVariable%(graphExprH&, "X", vtFLOAT)
 If errcode% <> EXPR_SUCCESS Then
 DisplayErrorMessage (errcode%)
 Exit Sub
 End If

 ' Set the expression text for the graph
 errcode% = FBSetExpression%(graphExprH&, Formula$)
 If errcode% <> EXPR_SUCCESS Then
 DisplayErrorMessage (errcode%)
 Exit Sub
 End If

 ' At this point, were only interested in floating point types
 returntype% = FBGetReturnType(graphExprH&)
 If (returntype% <> vtFLOAT) Then
 MsgBox "Floating point expression expected"
 Exit Sub

 End If

 ' Determine x increment value based on xmin and xMax
 xDelta# = (XMax# - XMin#) / numpts%

 ' expand left and right endpoints by x increment
 XMax# = XMax# + xDelta#
 tmp# = XMin#
 XMin# = XMin# - xDelta#

 cnt% = 0

 ' Setup preliminary graph parameters
 FormulaGraph.AutoInc = 0
 FormulaGraph.DrawMode = 0 ' delay painting until all points calculated
 FormulaGraph.GraphCaption = "Calculating"
 FormulaGraph.NumPoints = numpts%
 FormulaGraph.ThisSet = 1

 ' Set the beginning value of X
 errorcode% = FBSetFloatVariable%(graphExprH&, "X", tmp)

 While (Xdata# <= XMax#) And (cnt% < numpts%)
 ' Evaluate the formula for the current value of X
 errorcode% = FBGetFloatResult%(graphExprH&, Ydata#)

 ' Pass values on to graph
 FormulaGraph.ThisPoint = cnt% + 1
 FormulaGraph.GraphData = Ydata#
 FormulaGraph.XPosData = Xdata#

 ' increment our loop count
 cnt% = cnt% + 1

 ' calculate new value of x
 Xdata# = Xdata# + xDelta#

 ' Set x variable to new value
 errorcode% = FBSetFloatVariable%(graphExprH&, "X", Xdata#)
 Wend
 FormulaGraph.GraphTitle = "Graph Of : " + Formula$
 FormulaGraph.DrawMode = 2 'repaint graph
End Sub ' PlotGraph

ValueAsString Function
Unit
FBComp

Declaration
Function ValueAsString(const FValue : TValueRec):String;
Description
Converts a TValueRec record to its equivalent string representation.

Variable Handling Functions
The routines in this section deals with variable processing internal to FormulaBuilder. If you wish to
handle variables in your own code, you should refer to the section on Callbacks in the chapter “Extending
FormulaBuilder”.

Adding Variables
FBAddVariable
FBParseAddVariable

Disposing Variables
FBFreeVariable
FBFreeVariableList

Counting Variables
FBGetVariableCount

Getting Variable Values
FBGetBooleanVariable
FBGetDateVariable
FBGetFloatVariable
FBGetIntegerVariable
FBGetStringVariable
FBGetVarAsString
FBGetVariablePrim
FBGetVarPtr
FBPeekVariable
FBPeekVarVB

Setting Variable Values
FBSetBooleanVariable
FBSetDateVariable
FBSetFloatVariable
FBSetIntegerVariable
FBSetStringVariable
FBSetVarFromString
FBSetVariablePrim

Variable Parameter List Example 1
The LOG function, as it is implemented in FormulaBuilder, has one mandatory and one optional
parameter :

LOG(number <,base>)

The log function returns the logarithm of a number to a specified base. In the current implementation, if
base is ommitted, it is assumed to be 10.

We will show an implementation of the LOG function :

Procedure LogProc(paramcount : byte;
 const params : TActParamList;
 var retvalue : TValueRec;
 var errcode : integer;
 Exprdata : longint);export;
var number : extended;
 base : integer;
begin
 number := params[0].vFloat;
 if paramcount = 1 then
 base := 10
 else
 base := params[1].vInteger;
 try
 retvalue.vFloat := ln(number) / ln(base);
 except
 on EInvalidOp do errcode := EXPR_DOMAIN_ERROR;
 on EZeroDivision do errcode := EXPR_ZERO_DIVISION;
 end;
end;

Since we don't know beforehand how many parameters the function will receive, we must examine the
paramcount parameter. Notice that true to our previous definition of LOG, base is set to 10 if only the first
parameter (number) is entered.

We notify the parser that we have a variable parameter list when we register the callback with
FBRegisterFunction

LogFnId := FBRegisterFunction('LOG',vtFLOAT,'fi',1,LogProc);

As you know from previous examples, the fourth parameter of FBRegisterFunction is an integer value
specifying the minimum number of parameters expected for the programmer-defined function. Since it is
less than the maximum number of parameters expected by the function (length('fi') = 2), the parser will
allow no less than one and no more than 2 parameters.

Variable Parameter List Example 2
 The SUMSQ function returns the sum of the squares of its arguments. We can have as few as 1 and as
many as 16 parameters of type float.

Procedure SumSqProc(paramcount : byte;
const params : TActParamList;

 var retvalue : TValueRec;
 var errcode : integer;
 Exprdata : longint); export;
var i : integer;
 sum : extended;
 sqr : Extended;

begin
 sum := 0;
 for i := 0 to pred(paramcount) do
 begin
 number := params[i].vFloat;
 sum := sum + (number * number);
 end;
 retvalue.vFloat := sum;
end;

We register SUMSQ as follows :

SumSqId := FBRegisterFunction('SUMSQ',vtFLOAT,
'ffffffffffffffff',1,SumSqProc);

Although this example uses only float parameters, we could just as easily mix parameter types. In other
words, using variable parameters does not mean that all parameters must be of the same type.

VariableCount Property
See Also
Applies to
All FormulaBuilder Components

Declaration
Property VariableCount : integer;
Description
Read-only. Returns the number of variables successfully added with the AddVariable method or the
Variables property.

See Also
 AddVariable
 ParseAddVariable
 VariableList
 Variables

VariableList Example

 Function TForm1.GetVariableListing : TStringList;
 var i : integer;
 tmp : String[10];
 curvar : TVariable;

 begin
 result := TStringList.Create;
 For i := 0 to Expression.VariableCount - 1 do
 begin
 curVar := Expression.VariableList[i];
 tmp := curVar.Name + #9 + ValueAsString(curVar.Value);
 FBFreeValue(curVar.Value); { in case of string variables }
 result.Add(tmp);
 end;
 end;

VariableList Property
See Also Example
Applies to
All FormulaBuilder Components

Declaration
Property VariableList[i : integer]:TVariable;
Description
This array property provides read/write access to the expression’s variable list by a numerical index i,
where i is between 0 and VariableCount-1. If a variable is assigned to a this property , FBFreeValue
should be called on the value field after the variable is no longer needed.

See Also
 AddVariable Method
 StringValues Property
 Variables Property

Variables
Variables are symbols which represent unknown values. Variable names in FormulaBuilder begin with an
alphabetic character, followed by any combination of alphanumeric characters. Variable identifiers are not
case sensitive. They may be handled automatically by FormulaBuilder, or in programmer code by using
the FBSetVariableCallbacks function call (or the Onxxx events in the Delphi Components).

Variables Property
See Also
Applies to
All FormulaBuilder Components

Declaration
Property Variables[const vname : TvarName]:TValueRec;
Description
This array property provides read/write access to the variable values by a name. If you attempt to assign
a value to a variable that does not exist, a variable with name vname is created and given the value of the
rvalue of the assignment. TValueRec is described in the appendix. If a variable is assigned to a this
property , its value should be disposed of with FBFreeValue after the variable is no longer needed

Example
Interest := MortgageExpr.Variables[’Interest’];
Interest.vFloat := Interest.vFloat + inflation;
MortgageExpr.Variables[’Interest’] := Interest;

Variables Property Example
Assume we have a form of type TForm1, an initialized TExpression instance Expression1, and a record
(Person) with the following structure :

Type
TPerson = record

Name : String[45];
Salary : Double;
Married : boolean;
Children : byte;
BirthDate : TDateTime;

end;

Procedure TForm1.AddVariables;
begin
 with Expression1 do
 begin
 { Note that the variables were added before the expression }
 { involving them was assigned to the Formula property }
 AddVariable('Name',vtSTRING);
 AddVariable('BirthDate',vtDATE);
 AddVariable('Married',vtBOOLEAN);
 AddVariable('Children',vtInteger);
 AddVariable('Salary',vtFLOAT);
 AddVariable('PIN',vtFLOAT);
 Formula := 'PIN := Length(Name) + DAY(BirthDate) -
 (Sqrt(Age) * Salary) * IIF(Married,Kids,0)';
 end;
end; { AddVariables }

 Procedure TForm1.SetVariables;
 var Salary, name, age, DOB, married, kids : TValueRec;
 begin
 { First we set the type of variable }
 Salary.vtype := vtFloat;
 Salary.vFloat := Person.Salary;

 married.vtype := vtBOOLEAN;
 married.vBoolean := Person.Married;

 Kids.vtype := vtINTEGER;
 Kids.vInteger := Person.Children;

 name.vtype := vtSTRING;
 name.vpString := FBCreateString(Person.Name);

 dob.vtype := vtDATE;
 dob.vDate := Person.BirthDate;

 { now set our variable values }
{ note that even though we assume that the variables have already been
 added by a call to AddVariable, the Variables property will automatically
 create variables that do not exist. }

 With Expression do
 begin
 Variables['Name'] := Name;
 Variables['BirthDate'] := DOB;
 variables['Married'] := Married;
 variables['Children'] := Kids;
 Variables['Salary'] := Salary;
 end;

 end;

Procedure TForm1.GetVariables;
 var temp : TValueRec;
 begin
 With Expression1 do
 begin
 temp := Variables['Name'];

 Person.Name := temp.vpString^;
 FBFreeValue(temp);

 temp := Variables['BirthDate'];
 Person.BirthDate := temp.vDate;
 Person.Married := variables['Married'].vBoolean;
 Person.Children := variables['Children'].vInteger;
 Person.Salary := Variables['Salary'.vFloat;
 end;
 end;

See Also
 AddVariable Method
 ParseAddVariable Method
 VariableList Property

WEEKDAY Function
See Also Date/Time Functions A-Z Function Reference
Description
the numeric day of the week associated with date1 as an integer between 1 and 7. Sunday is the first day
of the week and Saturday is the seventh.

Syntax
WEEKDAY(DateSerial)

DateSerial is the date/serial number from which you wish to derive the weekday number.

See Also
 DAY
 DAYNAME

WORDCOUNT Function
See Also String Functions A-Z Function Reference
Description
Calculates the number of words in a string, based on a set of delimiters.

Syntax
WORDCOUNT(source, delims)

source is the string for which words are to be counted
delims is the string of delimiters. A word is considered as an unbroken sequence of alphabetic characters,
delimited by delims.

See Also
 EXTRACT
 LENGTH

Windows API Callback Example
This code snippet demonstrates the use of the extra longint parameter in Windows callback functions to
pass application specific data. Notice the use of the lParam parameter :

Uses WinProcs, Classes

{Use the Windows Enumwindows API function to get a list of all top-level windows
and their handles }

{ Callback function called by the EnumWindows function }
 Function GetParentWindowListProc(Handle : Hwnd;

lparam : longint):BOOL; export;
{ implicit typecast. Convert lparam back to a TStringlist}

 var List : TStringList absolute lparam;
 len : word;
 title : array[0..120] of char;
 ptitle : PChar;

 begin
 result := TRUE; { enumerate for all parent windows }
 ptitle := @Title;
 title[0] := 0;
 len := GetWindowText(handle,ptitle,sizeof(title)-1);
 if len > 0 then
 begin
 if not assigned(list) then
 List := TStringList.Create;

{ Store the window title and handle. Note that }
{ since Tstringlist expects a Tobject reference }
{ as the second parameter, we must typecast the }
{ handle to quiet the compiler. To use the handle,}
{ we must cast in the opposite direction.
{ Eg. handle := Longint(List.Objects[1]); }

 list.AddObject(strpas(ptitle), TObject(Longint(Handle)));
 end;
 end;
 { Main function. Calls EnumWindows to obtain window list }
 Function GetParentWindowList : TStringList;
 begin
 Result := TStringList.Create;
 { pass the reference to the list as the lparam }
 EnumWindows(@GetParentWindowListProc,longint(result));
 end;

YEAR Function
See Also Date/Time Functions A-Z Function Reference
Description
Returns the year of the date argument.

Syntax
YEAR(dateSerial)

dateSerial is the date serial number of the date from which you wish to extract the year.

See Also
 DAY
 MONTH
 TODAY

annuity due
An annuity due is an annuity in which payments are made at the beginning of each period.

The base of the natural Logarithm
e = 2.7182818284590452353602874713

evaluation phase
the phase of the evaluation process where the internal tokenized representation of the string expression
is evaluated to return a singular value.

ordinary annuity
An ordinary annuity is an annuity in which payments are made at the end of each period.

previous examples
 Example 1
 Example 2
 Example 3

vtANY = 11

vtBOOLEAN = 1

vtDATE = 9

vtFLOAT = 3

vtINTEGER = 0

vtNONE = 13

vtPOINTER = 5

vtSTRING = 4

vtTYPEMISMATCH = 14

vtXXX Constants
The vtXXX constants are unsigned character (byte) sized values representing the types handled by
FormulaBuilder.

Constant Value Description
vtINTEGER 0 32 bit integer value (longint)
vtBOOLEAN 1 byte sized boolean
vtCHAR 2 8-bit unsigned character
vtFLOAT 3 double
vtSTRING 4 pointer to a Pascal string (Pstring). The first represents the length of the

string, with the string data immediately following.
vtPOINTER 5 a 32bit pointer value
vtDATE 9 DateTime type. A double in which the integer portion represents the

number of days since 01/01/0001 and the fractional part represents the
fractional part of the day.

vtANY 11 Any type. This type is used to allow the parser to handle functions whose
parameters or return value may be of any of the other types supported by
the engine. Type checking on ANY parameters or return values is deferred
until the evaluation phase. Note that TValueRec does not have a field
corresponding to this type.

vtTYPEMISMAT
CH

14 Type mismatch or invalid result. Most like the operands in an operation
are incompatible with an operator.

vtNONE 13 a special value the programmer uses in the TCBKFindVariable callback
(or the OnFindVariable event for Delphi programmers) to indicate that the
token passed is not a variable

